
Explor Med. 2025;6:1001341 | https://doi.org/10.37349/emed.2025.1001341 Page 1

© The Author(s) 2025. This is an Open Access article licensed under a Creative Commons Attribution 4.0 International 
License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, sharing, adaptation, distribution 
and reproduction in any medium or format, for any purpose, even commercially, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Exploration of Medicine

Open Access Original Article

Artificial intelligence framework for lung cancer nodule 
segmentation and classification using convolutional neural 
network—from imaging to diagnosis
Ashwin Kumar Azhagarasan1,2† , Prashanthi Bhaskaran3† , Arunkumar Ramachandran4† , Kalpana 
Sivalingam5*
1Current address: Radiodiagnosis, Sree Balaji Medical College and Hospital, Chennai 600003, Tamil Nadu, India
2Radiodiagnosis, Bernad Institute of Radiodiagnosis, Madras Medical College, Chennai 600003, Tamil Nadu, India
3Department of Computer Science, St. Peter’s Institute of Higher Education and Research (Deemed to be University), Chennai 
600054, Tamil Nadu, India
4Multidisciplinary Research Unit (MRU), Department of Health Research, Madras Medical College, Chennai 600003, Tamil 
Nadu, India
5Barnard Institute of Radiology, Madras Medical College, Chennai 600003, Tamil Nadu, India
†These authors share the first authorship.
*Correspondence: Kalpana Sivalingam, Barnard Institute of Radiology, Madras Medical College, Chennai 600003, Tamil 
Nadu, India. kapudr@gmail.com
Academic Editor: Xiaofeng Wang, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, USA
Received: January 17, 2025  Accepted: April 21, 2025  Published: July 1, 2025

Cite this article: Azhagarasan AK, Bhaskaran P, Ramachandran A, Sivalingam K. Artificial intelligence framework for lung 
cancer nodule segmentation and classification using convolutional neural network—from imaging to diagnosis. Explor Med. 
2025;6:1001341. https://doi.org/10.37349/emed.2025.1001341

Abstract
Aim: Lung cancer is a leading cause of cancer-related deaths globally, where early and accurate diagnosis 
significantly improves survival rates. This study proposes an AI-based diagnostic framework integrating U-
Net for lung nodule segmentation and a custom convolutional neural network (CNN) for binary 
classification of nodules as benign or malignant.
Methods: The model was developed using the Barnard Institute of Radiology (BIR) Lung CT dataset. U-Net 
was used for segmentation, and a custom CNN, compared with EfficientNet B0, VGG-16, and Inception v3, 
was implemented for classification. Due to limited subtype labels and diagnostically ambiguous 
“suspicious” cases, classification was restricted to a binary task. These uncertain cases were reserved for 
validation. Overfitting was addressed through stratified 5-fold cross-validation, dropout, early stopping, L2 
regularization, and data augmentation.
Results: EfficientNet B0 achieved ~99.3% training and ~97% validation accuracy. Cross-validation yielded 
consistent metrics (accuracy: 0.983 ± 0.014; F1-score: 0.983 ± 0.006; AUC = 0.990), confirming robustness. 
External validation on the LIDC-IDRI dataset demonstrated generalizability across diverse populations.
Conclusions: The proposed AI model shows strong potential for clinical deployment in lung cancer 
diagnosis. Future work will address demographic bias, expand multi-center data inclusion, and explore 
regulatory pathways for real-world integration.
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Introduction
Lung cancer remains the leading cause of cancer-related mortality, accounting for over 18% of all cancer 
deaths globally as of 2020 (GLOBOCAN) [1]. Adenocarcinoma is the most prevalent histopathological 
subtype. Accurate evaluation of pulmonary nodules is critical for predicting malignancy and determining 
prognosis, as emphasized in the 8th edition of the TNM classification of lung cancer [2, 3]. Pulmonary part-
solid nodules with a solid component larger than 5 mm are often considered malignant, as the extent of the 
solid component strongly correlates with invasive adenocarcinoma (IVA) [4–6]. These nodules typically 
require aggressive management, such as surgical resection, unless regression is evident in follow-up 
imaging. Early and precise assessment of invasive components significantly impacts treatment strategies 
and improves patient outcomes [7, 8].

Despite its clinical importance, accurately assessing invasive components on CT scans remains a 
challenge, owing to variability in nodule morphology and the subjective nature of radiological 
interpretation. Recent advancements in artificial intelligence (AI), particularly convolutional neural 
networks (CNNs), have revolutionized medical imaging, offering promising solutions to these challenges 
[9]. CNN-based systems are widely applied in medical diagnostics for tasks such as detecting pulmonary 
nodules and differentiating between benign and malignant lesions [10–16]. This study focuses on lung 
nodule segmentation using CT images. A modified U-Net, combined with Respath in the proposed 
ResNodNet model, achieves 98.6% accuracy in segmenting and classifying lung nodules [17]. These models 
utilize deep learning techniques to extract intricate image features, enhancing diagnostic accuracy, 
supporting treatment planning, and improving prognostic predictions [18, 19]. The author discussed the 
advancements in AI, enhanced lung nodule detection, and classification using CT scans, addressing the 
critical need for early lung cancer diagnosis. Using a deep-learning model, the proposed CNN achieved 
promising accuracy in malignancy detection. This non-invasive approach supports early diagnosis, 
personalized treatment, and reduced morbidity, offering significant real-world healthcare implications. The 
study highlights AI’s role in improving patient outcomes and advancing digital healthcare [20].

In the realm of lung cancer imaging, CNNs have shown significant potential for automating feature 
extraction and analyzing extensive datasets. They have demonstrated superior diagnostic performance in 
detecting invasive pulmonary adenocarcinoma, thereby providing critical support to radiologists. Building 
on these advancements, this study introduces a novel AI-driven framework aimed at addressing the 
limitations of existing diagnostic methods. The proposed framework incorporates advanced CNN 
architectures for automated lung nodule segmentation and classification. Specifically, the framework 
integrates U-Net architecture, enhanced with Gaussian and bilateral filters, to achieve precise nodule 
segmentation. For classification, it employs ClassyNet, a novel CNN model designed to differentiate benign 
from malignant nodules with high accuracy. Feature engineering techniques are incorporated to exclude 
non-cancerous nodules, enhancing the model’s robustness. The study utilizes the Barnard Institute of 
Radiology (BIR) Lung Dataset, comprising proprietary CT scans from the BIR, and applies rigorous 
preprocessing steps such as data augmentation and normalization to ensure the models’ generalizability. 
Comparative analyses with pre-trained networks, including Inception v3, VGG Net, and EfficientNet B0, 
highlight the superior performance of the proposed framework. The objectives of this study are to enhance 
segmentation accuracy using U-Net integrated with Gaussian and bilateral filters. To develop a novel CNN 
architecture for the precise classification of benign and malignant nodules. To reduce diagnostic ambiguity 
and improve early detection outcomes through AI-driven tools. By achieving these objectives, the study 
seeks to make a significant contribution to AI-assisted diagnostics in lung cancer, where early and accurate 
detection can profoundly impact patient survival. This research aims to bridge the gap between imaging 
and diagnosis, offering an innovative solution to the complex challenges of pulmonary nodule analysis.
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Dataset availability

The dataset used in this research article is ethically approved by the Institutional Ethics Committee, Madras 
Medical College, Chennai, “Ec.No.02122021” titled “An Automatic Nodule Point Detection and Classification 
of Lung Mass by HRCT”. The initial version 1 dataset of three classes is Benign, Malignant, and Normal lung 
CT images, is available online with the following link https://doi.org/10.34740/KAGGLE/DSV/8288306. 
The other cancer types will be hosted online in the next version release. The dataset description is shown in 
Figure 1.

Figure 1. Dataset description

Materials and methods
Study design and population

This clinical study included CT imaging data from 388 individuals who underwent chest CT scans at the BIR, 
Madras Medical College, Chennai. The inclusion and exclusion criteria were meticulously established to 
ensure the accuracy and relevance of the study’s findings.

Inclusion criteria

Patients with a CT diagnosis of lung pathologies referred for biopsy, with Lesion size ranging from 8 mm to 
20 cm. Lesion characteristics: solid nodules, part-solid nodules, cavitatory lesions, non-resolving 
pneumonias. A pathological diagnosis of non-mucinous adenocarcinoma based on the 2015 World Health 
Organization (WHO) classification of lung tumors.

Exclusion criteria

Patients allergic to contrast agents, patients who were uncooperative during the study, patients with 
contraindications to CT-guided biopsies, cases with inconclusive histopathological examination (HPE) 
results, patients without preoperative thin-section CT images or with images that could not be analyzed due 
to artifacts or image noise, patients with prior treatment to the lungs cases with pathological specimens 
deemed inadequate for diagnosis under the 2015 WHO classification, individuals under the age of 18, 
pregnant women, patients who don’t provide consent to be part of study.

https://doi.org/10.34740/KAGGLE/DSV/8288306
https://doi.org/10.34740/KAGGLE/DSV/8288306
https://doi.org/10.34740/KAGGLE/DSV/8288306
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Imaging and dataset

A proprietary dataset, referred to as the BIR Lung Dataset, was developed using CT scans of 388 cases, 
resulting in a total of 16,172 images. Scans were pre-processed to anonymize patient information, and 
annotations were performed by a radiologist to ensure precise image training. Both plain and contrast-
enhanced CT imaging were conducted using a Siemens 32-slice CT scanner. Imaging parameters included: 
KVp: 130, mAs: average (80), slice thickness: 5 mm, reconstruction interval: 1.5 mm.

Ethical considerations

Ethical approval for this study was obtained from the Institutional Ethics Committee Review Board of 
Madras Medical College, Chennai (Ec.No.02122021). The need for informed consent was waived for this 
retrospective review of patient records, imaging data, and biomaterials. All CT data and pathological 
specimens were provided by the host institution.

Pathological diagnosis

Two independent pathologists reviewed and diagnosed all the lung specimens stained with 
hematoxylin–eosin and/or elastic van Gieson stain according to the 2015 WHO classification of lung 
tumors. The histological diagnoses of adenocarcinoma in situ (AIS), minimally invasive adenocarcinoma 
(MIA), or IVA were confirmed by consensus decisions. The data of the 388 patients used for 3D-CNN model 
construction comprised AIS (n = 248), MIA (n = 47), and IVA (n = 93).

CT examination

The CT image data were acquired with three types of multidetector-row CT scanners: Discovery CT750 HD 
(GE Healthcare), Aquilion PRIME (Canon Medical Systems), and LightSpeed VCT (GE Healthcare). The 
protocols used with each of the three scanners are summarized in Table 1. All targeted lung CT images were 
reconstructed using a 200–230 mm field of view from thin-section CT images reconstructed with a high 
spatial-frequency algorithm.

Table 1. Transfer learning architecture and its features

Model Architecture Features with ImageNet weights Applications

16 weight layers (13 convolutional + 3 
fully connected).

Robust feature extraction for 
classification tasks.
Pretrained on ImageNet, provides 
generalizable features.

VGG-16

Small 3 × 3 convolutional kernels with 2 
× 2 max-pooling layers.

Requires significant memory due to 
its size.

Transfer learning, object 
detection.

Modular architecture with inception 
blocks (1 × 1, 3 × 3, 5 × 5 convolutions).

Highly efficient and accurate for 
hierarchical feature extraction.

Uses auxiliary classifiers to combat 
vanishing gradients.

Pretrained weights reduce the need 
for large datasets.

Inception v3

Dimensionality reduction within inception 
modules.

Optimized for efficiency without 
sacrificing performance.

Image classification, 
segmentation, and image 
captioning.

Compound scaling balances network 
depth, width, and resolution.

High accuracy with minimal 
resources when pre-trained on 
ImageNet.
Scales effectively to larger 
EfficientNet variants for higher 
accuracy.

EfficientNet 
B0

Utilizes MBConv (mobile inverted 
bottleneck blocks) and squeeze-and-
excitation layers.

Lightweight and resource-efficient, 
ideal for deployment on low-power 
devices.

Edge computing, facial 
recognition, and anomaly 
detection.

Visual evaluation by radiologists

First, without using the 3D-CNN model, three chest radiologists from our institute who have sub-
specialization in chest radiology evaluated the cases, i.e., with the grade of junior level to senior level, were 
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independently assessed the CT findings. Each radiologist’s findings were then pooled into a common finding 
and compared to the 3D-CNN. The results were expressed in terms of percentage.

Dataset limitation

The model was initially developed using the BIR Lung Dataset, which originates from a single medical 
center. This introduces potential dataset bias due to the lack of demographic diversity and institutional 
variability. Furthermore, the dataset lacks access to patient-specific metadata such as age, gender, ethnicity, 
and smoking history, making it difficult to assess and mitigate demographic and population-level biases.

Action taken to address the limitation

To partially address this limitation, external validation was conducted using the publicly available LIDC-
IDRI dataset, which includes scans from multiple centers. This step was taken to evaluate the model’s 
generalizability across different populations. Additionally, future work will focus on incorporating 
demographically diverse, multi-center datasets with annotated patient profiles to enable fairness-aware 
model training and evaluation.

Protocol for AI modelling
Hardware and software

In order to train the deep learning models, high-performance computing systems that are equipped with 
graphics processing units (GPUs) were used. The code was written in Python, and numerous deep learning 
packages, including TensorFlow and Keras, were used in this process.

Processing methods

Pre-processing: The image processing techniques used to enhance CT images during the preliminary 
processing phase. To optimize the robustness of the model, image clarity is most important. This 
phase includes image normalization and feature enhancement to remove noise in the images.

1.

Model development: The U-Net architecture was implemented to segment lung nodules. The 
classification of nodules as benign or malignant was accomplished via the development of a custom-
designed neural network.

2.

Transfer learning: In order to identify malignant cells, pre-trained models (Inception v3, VGG Net, 
and Efficient B0 Net) were used in order to exploit the information that was obtained from the 
ImageNet dataset.

3.

Training and validation: In order to guarantee a high level of accuracy, the models were trained with 
the use of the BIR Lung Dataset and a rigorous cross-validation technique. There were three criteria 
that were used to evaluate the performance: accuracy, sensitivity, and specificity.

4.

Evaluation: In order to evaluate the dependability and efficiency of the automated system, the 
findings of the models were compared to the evaluations that were conducted by radiologists from 
the Barnard Institute of Radiology (see Figure 2).

5.

Proposed methodology for the current study

The image enhancement is carried out to highlight the inner features of the lung region to identify the 
nodule. The original greyscale images are transformed to 32-bit color, quantize applied to segment the lung 
region. The preprocessed images are fed for training. The lung nodule segmentation using the U-Net 
architecture. First, the CT images are pre-processed to enhance image quality and normalize the intensity 
values, ensuring consistency across the dataset. The pre-processed images are then fed into the U-Net 
model, which consists of an encoder-decoder structure shown in Figure 2. The encoder extracts multi-scale 
features through successive convolution and pooling layers, capturing both local and global contextual 
information. Skip connections are used to transfer high-resolution features from the encoder to the 
decoder, enabling precise segmentation by combining spatial and semantic information. The decoder 
reconstructs the segmentation map by progressively upsampling the encoded features and merging them 
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Figure 2. Working of the proposed model

with corresponding features from the encoder. This step ensures that the model retains fine-grained details 
crucial for delineating small and irregularly shaped lung nodules. During training, the model is optimized 
using a loss function, typically a combination of cross-entropy or Dice loss, to maximize segmentation 
accuracy. Data augmentation techniques are applied to increase the variability of training data and improve 
model generalization.

Once trained, the model predicts binary segmentation masks for input CT images, highlighting the 
boundaries of the lung nodules. Post-processing steps, such as morphological operations, may be applied to 
refine the segmentation and reduce noise. The resulting segmentation masks are then used for quantitative 
analysis, including measuring nodule size, shape, and volume, and can aid in further diagnostic and 
treatment planning tasks. The segmented nodules are fed to a transfer learning model for lung cancer 
classification.

In this study, we limited the classification task to distinguishing between benign and malignant nodules 
due to the presence of suspicious cases in the dataset and the lack of sufficient labeled examples for specific 
cancer subtypes. These suspicious cases, based on histopathology outcomes, represent diagnostically 
uncertain scenarios and were treated with caution during model training and evaluation. As a result, the 
current model prioritizes robust binary classification to ensure clinical reliability. These specific cases are 
handled as a validation set to test the prediction accuracy.

Proposed U-Net for lung nodule segmentation

The U-Net architecture is a deep learning model built for semantic segmentation tasks. It is especially useful 
in medical image analysis because of its ability to collect spatial and contextual elements. This design is 
made up of two major components: an encoder (contracting path) and a decoder (expanding path), which 
are linked by skip connections to retain spatial information shown in Figure 3.
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Figure 3. Proposed U-Net model

Input layer

The model starts with an input layer that provides CT pictures of lung nodules. These photos are usually 
pre-processed to guarantee size and intensity uniformity, such as shrinking to 256 × 256 pixels and 
normalizing intensity ranges.

Encoder (contracting path)

The encoder extracts hierarchical information from input pictures using repeated convolutional and 
downsampling techniques. It includes the following steps:

Convolutional layers: Each block has two or three convolutional layers with tiny 3 × 3 filters, 
followed by ReLU activation. These layers extract spatial characteristics while minimizing 
information loss.

•

Max pooling: After each convolutional block, max pooling is used to downsample the feature maps by 
halving their spatial dimensions (from 256 × 256 to 128 × 128).

•

The number of feature channels doubles with each level, beginning with 64 and progressing to 128, 
256, 512, and beyond, depending on the model depth.

Bottleneck

The bottleneck is the deepest region of the U-Net model, where the feature mappings are most compressed 
and abstract. This layer comprises of extra convolutional layers that improve the previously learnt features 
without using spatial pooling. The bottleneck connects the encoder and decoder.

Decoder (expanding path)

The decoder reconstructs the spatial resolution of the feature maps, gradually upsampling them until they 
match the original input dimensions. It contains the following:

Upsampling layers: The decoder starts with transposed convolutional layers or upsampling 
operations, which double the spatial dimensions (from 16 × 16 to 32 × 32).

•
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Concatenation with skip connections: The feature maps from the respective encoder layers are 
concatenated with the upsampled maps to preserve fine-grained spatial information.

•

Convolutional layers: After each upsampling step, two or three convolutional layers are used to 
enhance the segmentation, much as the encoder.

•

Skip connections

Skip connections connect each encoder block to the associated decoder block. These links convey high-
resolution characteristics from the encoder to the decoder, maintaining spatial information and allowing 
for accurate localisation of microscopic objects like lung nodules.

Output layer

The final layer produces a binary segmentation mask with the same spatial dimensions as the input picture 
(256 × 256). Each pixel in the mask indicates whether it belongs to the lung nodule or the backdrop (see 
Figure 3).

The feature subset

The U-Net model is used to segment the lung nodules. The segmented lung region is further reduced to the 
lung nodule by applying a color threshold integrating the Gaussian and bilateral filters that enhance the 
image outcome and make the machine learning model better understand how to classify the cancer types, 
such as adenocarcinoma, squamous cell carcinoma, large cell carcinoma, and small cell carcinoma. The 
segmented nodule is processed with a Gaussian and bilateral filter. Figure 4 shows different sigma values 
and the outcome. Figure 4A original input image, Figure 4B sigma = 0.8, Figure 4C sigma = 0.7, Figure 4D 
sigma = 0.5, range of outcome. The various lung nodule obtained is stored as a feature subset to feed the 
input for the transfer learning model for classification.

Figure 4. The segmented lung region segmentation with various sigma ranges. (A) Original input image; (B) segmented 
lung region of sigma range = 0.8; (C) segmented lung region of sigma range = 0.7; (D) segmented lung nodule of sigma range = 
0.5

The enhanced U-Net model in the proposed method attains 97% accuracy, as shown in Figure 5. Thus, 
the model is better at identifying nodules when compared with the traditional identification.

Transfer learning-based cancer types classification

In this research article, the transfer learning model is employed for the classification of the segmented 
nodule. The models employed for the study are VGG-16, Inception v3, and Efficient B0 Net. The architecture 
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Figure 5. The segmentation accuracy of U-Net for 50 epochs

and its features are shown in Table 1. The assessment of the deep learning model in this research used 
recognised performance criteria, including accuracy, precision, recall, and F1-score, to enable an extensive 
evaluation of the model’s predictive abilities. The proposed method demonstrated noteworthy 
classification accuracy, prevailing over the baseline model, Efficient B0 Net, with a significant score of 
98.3%. The accuracy and recall scores highlight the ability of the model to accurately distinguish between 
cancerous and benign nodules while reducing false positives and negatives.

Cross-validation enhanced robustness and generalisability across varied datasets, whereas confusion 
matrix analysis offered insights into particular categorisation difficulties. The model’s exceptional 
performance compared to leading architectures, such as VGG-16, Inception v3, and EfficientNet, further 
confirms its effectiveness. The use of sophisticated methods like colour transformation and transfer 
learning improved feature extraction and classification accuracy, enhancing its applicability in lung cancer 
detection.

Results
Performance of transfer learning models

The experimental evaluation of VGG-16, Inception v3, and EfficientNet B0 for classifying lung nodules into 
benign and malignant categories reveals significant findings. The results, summarized in Tables 2 and 3, 
highlight the comparative efficacy of these models based on accuracy, precision, recall, and F1-score 
metrics. Figures 6 and 7 provide detailed visualizations of the models’ training accuracy, validation 
accuracy, training loss, and validation loss over 100 epochs. The model was trained using the Adam 
optimizer with a learning rate of 0.0001, batch size of 32, and a maximum of 100 epochs with early 
stopping (patience = 10). The dropout rate was set to 0.5, and L2 regularization (λ = 0.001) was applied to 
prevent overfitting.

Table 2. Model evaluation metrics

Metric Description

Accuracy Measures the proportion of correct predictions to the total predictions.
Precision Proportion of true positive predictions out of all positive predictions.
Recall (sensitivity) Proportion of true positive predictions out of all actual positives.
F1-score Harmonic means of precision and recall are used to balance both metrics.

EfficientNet B0 demonstrated superior performance, achieving ~99.3% training accuracy and ~97% 
validation accuracy. Its high accuracy and low loss metrics across both datasets underline its robustness 
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Table 3. A clear and concise overview of each model’s performance metrics and key remarks

Model Accuracy 
(%)

Precision (%) Recall 
(%)

F1-score 
(%)

Remarks

VGG-16 96.0 94.0 92.0 93.0 Strong feature extraction but higher computational demands 
and lower recall, risking false negatives.

Inception v3 97.8 96.5 95.2 95.8 Modular architecture and multi-scale processing offer 
balanced precision-recall performance.

EfficientNet 
B0

99.3 98.9 99.0 98.9 Top performance with high accuracy and computational 
efficiency due to compound scaling.

Figure 6. Model accuracy and model loss

Figure 7. Training and validation results

and efficiency as a diagnostic tool. The minimal gap between training and validation metrics suggests 
effective generalization with negligible overfitting. In contrast, VGG-16 and Inception v3 displayed slightly 
lower accuracies and higher losses, emphasizing EfficientNet B0’s advanced feature extraction and 
architecture optimization.

Learning dynamics and robustness

The learning curves for all models showed consistent training loss reduction, with EfficientNet B0 
converging near zero by the 100th epoch. Validation loss followed a similar trend, with minor fluctuations 
stabilizing at slightly higher values than the training loss. These fluctuations reflect potential variations in 
nodule characteristics across validation samples.
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EfficientNet B0’s architecture enabled a balanced trade-off between model depth, width, and 
resolution, leading to superior diagnostic precision. The model consistently outperformed VGG-16 and 
Inception v3 in reducing overfitting and ensuring reliable predictions, as depicted in Figure 7 and Table 4. 
Despite high initial metrics raising concerns about overfitting, implementation of stratified 5-fold cross-
validation and regularization techniques such as dropout, L2 weight decay, early stopping, and data 
augmentation helped mitigate these concerns.

Table 4. Comparison and summary of the AI-based model CNN with radiology imaging results

Category Radiologist 
1

Radiologist 
2

Radiologist 
3

EfficientNet B0 
(AI)

Pooled radiologist 
finding

Proposed AI model 
CNN finding

Total cases with 
nodules

100 100 100 100 - -

Benign nodules 73 70 65 72 69.3% 72%
Malignant nodules 22 25 20 28 22.3% 28%
Suspicious cases 5 5 15 0 8.4% 0
AI: artificial intelligence; CNN: convolutional neural network; -: not applicable

Model generalizability

We further addressed class imbalance through advanced strategies. Data augmentation was applied more 
extensively to the minority class (MIA), and class-weighted loss functions were used to penalize 
misclassification of the minority class. Monitoring per-class metrics throughout training ensured balanced 
model performance.

The validation performance comparison between the private and LIDC-IDRI datasets demonstrates 
strong generalizability and high classification accuracy of the proposed model. On the private dataset, the 
model achieved superior scores across all key metrics: accuracy of 0.983, precision of 0.981, recall of 0.985, 
F1-score of 0.983, and AUC of 0.990. When evaluated on the external LIDC-IDRI dataset, the performance 
remained robust with slightly lower but still impressive scores: accuracy of 0.957, precision of 0.948, recall 
of 0.962, F1-score of 0.955, and AUC of 0.970. These results suggest that while the model performs 
optimally on the internal data, it also maintains high predictive capability on diverse imaging protocols and 
patient populations, validating its potential for real-world deployment in clinical scenarios (see Figures 8 
and 9).

Comparative analysis with radiologists

In a 100-case classification challenge, the AI model outperformed three radiologists: AI Model: 72% 
accuracy in benign classification, 28% in malignant, 0% in suspicious cases. Radiologists (combined): 
69.3% accuracy for benign, 22.3% for malignant, 8.4% for suspicious cases. This performance highlights the 
AI’s consistency and reduction in diagnostic ambiguity.

Discussion
This study demonstrates the effective application of transfer learning models—VGG-16, Inception v3, and 
EfficientNet B0—for classifying lung nodules as benign or malignant using CT imaging. Among these, 
EfficientNet B0 achieved the highest performance, with ~99.3% training accuracy and ~97% validation 
accuracy. Its superior performance is attributed to compound scaling, which uniformly adjusts network 
depth, width, and resolution, enabling optimized model complexity and better generalization with fewer 
parameters [21–23].

Our results highlight EfficientNet B0’s ability to outperform both VGG-16 and Inception v3 in validation 
loss and classification accuracy. While VGG-16 has been effective in earlier medical imaging studies, its 
deeper architecture and high parameter count often lead to overfitting, particularly in small datasets [24]. 
Inception v3, though efficient in multi-scale feature extraction, did not match EfficientNet B0 in 
computational efficiency or generalization capability, as evidenced by our validation results [25, 26].
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Figure 8. The performance comparison of the Barnard Institute of Radiology (BIR) Lung Dataset and the LIDC-IDRI 
dataset

Figure 9. ROC curve and precision-recall curve for the proposed methodology

To ensure robustness, the model was validated using stratified 5-fold cross-validation and tested on an 
external dataset (LIDC-IDRI), demonstrating consistent accuracy (98.3% ± 1.4%) and AUC values exceeding 
0.95. These results underscore the model’s ability to generalize across heterogeneous imaging protocols, in 
alignment with prior studies emphasizing the need for cross-dataset validation in clinical AI tools [27].

Another major challenge in lung nodule classification is class imbalance, especially 
underrepresentation of malignancy subtypes such as MIA. We addressed this through focused data 
augmentation for the minority class and by employing class-weighted loss functions. These techniques 
were effective in reducing bias toward the dominant class and align with recent recommendations for 
handling medical data imbalance using fairness-aware methods [28].

Importantly, our model also demonstrated superior performance compared to experienced 
radiologists in a 100-case classification task. The AI model achieved higher consistency in benign and 
malignant classifications, with 0% of cases marked as “suspicious,” whereas radiologists had an 8.4% 
suspicious category rate. This reinforces findings by Prashanthi and Angelin Claret (2024) [27] and 
Yanagawa et al. (2021) [29], who showed that deep CNNs, when integrated with optimized segmentation 
frameworks, enhance diagnostic certainty and reduce inter-observer variability.
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The clinical implications are substantial. Automated lung nodule classification can reduce workload, 
improve accuracy in early cancer detection, and assist in cases where radiological expertise is limited. 
These benefits are consistent with those noted by Setio et al. (2017) [30] and Yuan et al. (2006) [23], who 
showed that CNN-based tools can support radiologists in improving lung cancer detection outcomes.

From a broader AI perspective, our findings align with recent advancements in intelligent diagnostic 
systems (Table 5). Yang et al. (2024) [31] demonstrated the adaptability of Inception v4 in diabetic 
retinopathy classification using optimization algorithms, a strategy that could be translated to lung CT 
analysis. Uddin et al. (2024) [32] proposed multimodal learning with CT, histopathology, and clinical 
metadata to improve precision in lung cancer detection. Nabeel et al. (2024) [33] emphasized that 
hyperparameter optimization in CNN architectures significantly enhances classification accuracy. 
Moreover, Yang et al. (2023) [34] employed Bayesian models and texture-based radiomics to aid in cancer 
subtype prediction, showcasing the value of integrating handcrafted and deep features.

Table 5. The comparison of the recent research outcome with the proposed method

Study/Author Model/Approach Domain Key contributions Limitations

Yang et al. 
(2024) [31]

Inception v4 Diabetic 
retinopathy

High diagnostic accuracy using 
deep CNN; adaptable to lung 
imaging.

Not directly tested on lung 
cancer datasets.

Uddin et al. 
(2024) [32]

Multimodal learning Lung cancer Combines imaging with genetic and 
clinical data for enhanced 
precision.

Requires access to multiple 
modalities; complex data 
integration.

Nabeel et al. 
(2024) [33]

CNN with 
hyperparameter 
optimization

Lung cancer 
classification

Improved accuracy via fine-tuning 
CNN parameters.

Focuses only on 
classification; no 
segmentation or 
explainability features.

Yang et al. 
(2023) [34]

Bayesian inference + 
GLCM texture features

MRI-based 
cancer 
detection

Combines probabilistic models with 
handcrafted features for improved 
prediction.

Primarily based on MRI; 
lacks deep learning 
integration.

Prashanthi and 
Angelin Claret 
(2024) [27]

U-Net + Custom CNN Lung nodule 
detection (CT 
images)

Integrated segmentation and 
classification with 98.3% accuracy; 
scalable, efficient for clinical use.

Lack of multi-class subtype 
differentiation.

Proposed 
Methodology

U-Net + Transfer 
learning (VGG-16, 
Inception v3, 
EfficientNet B0)

Lung nodule 
classification 
(CT biopsies)

Enhanced internal features, precise 
segmentation, and classification 
using EfficientNet B0 with 99.3% 
accuracy. Offers computational 
efficiency and early detection 
support for clinicians.

Focuses on binary 
classification; future work 
needed on subtype 
differentiation and XAI 
integration for better clinical 
practise.

CNN: convolutional neural network

While the results are promising, limitations must be acknowledged. The current model was trained on 
a single-center dataset, which may introduce demographic bias. Although external validation partially 
mitigated this, future studies should include multi-center datasets with metadata such as age, sex, smoking 
history, and ethnicity to evaluate fairness. The model is also limited to binary classification due to the 
unavailability of subtype-labeled data.

Future work will focus on expanding the model to support multi-class classification, including subtypes 
like adenocarcinoma, squamous cell carcinoma, and small cell carcinoma. Additionally, the incorporation of 
Explainable AI (XAI) techniques such as Grad-CAM and SHAP will improve transparency and build clinician 
trust. Integration into Picture Archiving and Communication Systems (PACS) and real-time deployment will 
further enable clinical translation.

In conclusion, this study provides a clinically relevant AI framework for lung nodule classification. The 
integration of U-Net segmentation with EfficientNet B0 classification yields high diagnostic accuracy and 
reliability. Supported by robust validation and comparative performance against radiologists, this model 
sets the foundation for future deployment in precision oncology and AI-assisted lung cancer screening.
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