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Abstract
Aim: Since its emergence in 2019, coronavirus disease 2019 (COVID-19) has evolved into a global 
pandemic, placing extraordinary strain on healthcare systems and societies worldwide. Accurate 
forecasting of COVID-19 case trends is essential for effective public health planning and intervention.
Methods: This study employs the Susceptible-Infectious-Recovered (SIR) model to predict the progression 
of COVID-19 in three countries: Belarus, Thailand, and Lithuania. Instead of relying on static or globally 
derived estimates, the model parameters—infection rate (β) and removal rate (γ)—were dynamically 
calculated for distinct time periods in each country, using country-specific data extracted from 
Worldometer. This segmented approach accounts for temporal changes in transmission dynamics and 
public health responses.
Results: The country-specific, phase-based parameter estimation improved the model’s alignment with 
real-world COVID-19 trends observed in Belarus, Thailand, and Lithuania. The refined forecasts closely 
matched the actual progression patterns in each country, demonstrating the value of adapting parameter 
estimates to local epidemiological contexts.
Conclusions: The proposed approach enhances the predictive accuracy of the SIR model, providing a 
practical and adaptable framework for forecasting COVID-19 trends in countries with varying pandemic 
responses. These findings highlight the importance of dynamic parameter adjustment when applying 
mathematical models to evolving public health crises, ensuring more reliable projections to guide decision-
making.

https://orcid.org/0000-0003-2607-4940
https://orcid.org/0000-0001-6763-6626
https://orcid.org/0000-0002-5643-0021
https://orcid.org/0000-0002-3872-5301
https://orcid.org/0000-0002-6103-5624
mailto:shirmohammadi@sru.ac.ir
https://doi.org/10.37349/emed.2025.1001331
http://crossmark.crossref.org/dialog/?doi=10.37349/emed.2025.1001331&domain=pdf&date_stamp=2025-06-11


Explor Med. 2025;6:1001331 | https://doi.org/10.37349/emed.2025.1001331 Page 2

Keywords
COVID-19, Susceptible-Infectious-Recovered (SIR) simulation, disease prevalence, epidemiological 
forecasting, temporal phases

Introduction
In December 2019, a novel coronavirus, later identified as severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2), emerged, marking the beginning of an unprecedented global health crisis [1]. Within months, 
this highly transmissible virus triggered a global pandemic, spreading across continents and severely 
impacting public health systems, economies, and social structures [2, 3]. COVID-19, the disease caused by 
SARS-CoV-2, presents a wide spectrum of symptoms, ranging from mild respiratory issues to severe 
pneumonia, with fever, cough, and anosmia among the most common clinical manifestations [2].

Efforts to mitigate the spread of the virus have involved public health interventions such as mask 
mandates, social distancing, quarantine measures, and widespread disinfection protocols [4]. Some 
countries adopted extensive lockdowns to break transmission chains, though these measures were 
challenged by the virus’s asymptomatic carriers, insufficient healthcare infrastructure in certain regions, 
and the complexities of implementing population-wide interventions [5].

Mathematical modeling has played a critical role in understanding the spread and control of infectious 
diseases. Epidemiologists frequently rely on compartmental models to simulate disease dynamics and 
assess the potential impact of preventive strategies such as quarantine and social distancing [2]. Among 
these models, the Susceptible-Infectious-Recovered (SIR) framework remains one of the most fundamental 
and widely used approaches for predicting the trajectory of epidemics [6].

A range of studies has employed various modeling techniques to predict the progression of COVID-19 
and guide policymakers in decision-making. For example, some research has focused on the psychological 
effects of the pandemic, using methods such as Pearson correlation and multiple regression to explore the 
link between coronavirus-related anxiety and students’ learning anxiety [7]. Other studies have employed 
machine learning techniques, such as decision trees, to compare disease progression across different 
countries [8], while Long Short-Term Memory (LSTM) networks have been used to forecast case numbers 
in countries like India, Brazil, and the United States [9]. Additionally, models originally developed for SARS 
have been adapted to predict COVID-19 trends, particularly in Iran [10], and the Susceptible-Exposed-
Infectious-Recovered (SEIR) model has been utilized to analyze disease dynamics in the same region [11]. 
Several studies have also applied graphical analyses to identify key indicators for effective pandemic 
management [12], and system dynamics modeling has been used to examine disease progression across 
various provinces in Iran [13].

While these studies have significantly advanced the understanding of COVID-19 dynamics, they have 
largely focused on short-term predictions or specific geographical contexts. There remains a critical need 
for comprehensive, data-driven modeling to assess long-term transmission patterns and guide public 
health responses in diverse settings. This study addresses that gap by analyzing the spread of COVID-19 in 
Lithuania, Belarus, and Thailand using the SIR model. Data obtained from Worldometer, a widely used 
platform for global COVID-19 statistics, were employed to update the model parameters and simulate 
disease progression in these three countries.

The following sections of this paper review previous research on COVID-19 prediction, describe the SIR 
model and its application, present the results of modeling COVID-19 dynamics in Lithuania, Belarus, and 
Thailand, and conclude with key findings and their implications for future pandemic preparedness.

Previous works

Considering the significant impact of COVID-19 prediction modeling in assisting countries with control 
decisions and preventing the spread of the disease, it’s clear that this field holds paramount importance. 
Numerous research studies have been conducted globally, including in Iran, to explore various prediction 
methods.
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COVID-19 presents a wide clinical spectrum, from asymptomatic cases to severe respiratory failure, 
with older adults and those with pre-existing conditions facing the highest risks [14, 15]. Routine 
hematologic markers, including neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio 
(PLR), have shown strong associations with disease severity and prognosis [16–18]. Red cell distribution 
width (RDW) and inflammatory indices like mean platelet volume (MPV) and monocyte-to-lymphocyte 
ratio (MLR) further aid in risk stratification, especially in high-risk populations such as diabetics [19, 20]. 
These accessible markers offer valuable tools for early assessment and long-term monitoring in COVID-19 
management.

One study by Shomaliahmadabadi et al. (2021) [7] examined the role of coronavirus-related anxiety 
and negative metacognitive beliefs in predicting students’ learning anxiety. This descriptive research used 
an expanded correlation method and surveyed the entire population of female middle school students in 
Isfahan, Iran, during the 1399–1400 academic year (Iranian calendar, equivalent to 2020–2022 in the 
Gregorian calendar). The findings suggest that COVID-19 concerns and negative metacognitive beliefs can 
lead to increased learning anxiety. The researchers recommend implementing educational programs 
through various media channels, particularly radio and television, to modify students’ beliefs and reduce 
their anxiety, ultimately leading to improved academic performance.

Another study by Boskabadi and Doostparast (2020) [8] employed decision tree methods or regression 
to compare and predict the disease’s progression in countries like China, France, Germany, Iran, and others. 
Decision trees are non-parametric classification techniques widely used in data mining. They can be 
categorized as tree classification for discrete variables or tree regression for continuous variables. These 
methods, also known as CART (Classification and Regression Trees), can model and analyze both 
classification and regression scenarios.

The results obtained from this modeling reflect the impact of societal control on disease progression 
and the influence of this method in managing the reduction of screening costs and quarantines. Kadivar and 
Keshavarz Mohammadi (2020) [9] conducted a study using the LSTM method to predict the number of 
COVID-19 patients in three countries: India, Brazil, and the United States, which have the highest number of 
COVID-19 cases. LSTM, an improved form of the Recurrent Neural Network (RNN), has strong capabilities 
in predicting time series data. As a neural network, LSTM receives a set of samples as input and predicts the 
number of patients in future days based on configured settings. Moreover, the results obtained from this 
modeling indicate the level of prediction error, directly reflecting the accuracy of the modeling.

Hoseinpour Dehkordi et al. (2020) [10] conducted a modeling simulation through the Corona Team of 
Liujen Farmed Company, utilizing the SARS epidemic model to predict COVID-19 cases in Iran. Their study 
found a remarkable similarity between the epidemiological patterns of SARS and COVID-19, highlighting 
the potential applicability of the SARS model for predicting COVID-19 cases. However, the model 
demonstrated certain limitations, particularly in short-term predictions.

Ghaffarzadegan and Rahmandad (2020) [11] developed a dynamic and straightforward epidemic 
model in Iran, based on the SEIR framework. This model incorporates behavioral and logistical 
observations, particularly changes in contact rates and the mechanisms driving disease progression, 
providing a more reliable representation of the pandemic’s status based on available data.

Abbasimehr and Paki (2020) [12] examined key indicators related to the spread of COVID-19 and their 
practical applications in enhancing the understanding and management of the pandemic. Their study 
applied graphical analysis to historical data from countries such as Germany, Iran, and South Korea. The 
goal was to provide a comprehensive and critical assessment of essential indicators, explore their practical 
applications in pandemic management, and offer recommendations for optimal monitoring indicators to 
evaluate healthcare system performance. Their modeling covered a 14-day forecasting period, which is 
relatively short compared to other approaches.

In another modeling study, Salehi Va Shafiei and Makari Ghahroudi (2020) [13] investigated the 
prediction of COVID-19 progression using system dynamics modeling across various provinces of Iran.
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Moreover, Kraemer et al. (2020) [21] examined how human mobility patterns and timely control 
measures significantly influenced the trajectory of COVID-19 in China, providing valuable insights into the 
relationship between movement restrictions and infection rates.

Extensive research has been conducted to better understand the evolution, transmission, and 
treatment strategies for SARS-CoV-2. Araf et al. [22] highlighted the Omicron variant’s high transmissibility, 
increased risk of reinfection, and uncertainties regarding vaccine effectiveness. Zhang et al. [23] reviewed 
global efforts in vaccine and antiviral development, comparing SARS-CoV-2 with related coronaviruses. 
Farheen et al. [24] examined the emergence of the recombinant “Deltacron” variant, emphasizing the 
importance of closely monitoring its epidemiological characteristics. Chakraborty et al. [25] applied 
structural biology methods to investigate the interaction between SARS-CoV-2’s main protease (Mpro) and 
the antiviral drug nirmatrelvir, providing valuable insights for future antiviral drug design. Cui et al. [26] 
underscored the ongoing threat posed by zoonotic transmission of SARS-CoV-2 between humans and 
animals, highlighting the importance of cross-species surveillance. Zhai et al. [27] explored the zoonotic 
potential of porcine deltacoronavirus, stressing the need for monitoring coronaviruses in animal 
populations. Prapty et al. [28] addressed the challenges of diagnosing and treating co-infections of SARS-
CoV-2 and dengue virus, particularly in dengue-endemic regions, emphasizing the importance of dual 
diagnostic protocols.

The purpose of this article is to address the existing gaps in previous studies, notably the long-term 
impacts of COVID-19 changes. Nearly all models have assumed that recovered individuals will not be 
reinfected with the disease. This study challenges this assumption based on recent reports. A new discovery 
by laboratory researchers shows the virus’s strength, indicating a potential threefold increase in the 
transmission rate. In this research, three models with different variables are considered, compared, and 
conclusions are drawn from these models. The findings highlight the comparison of disease engagement 
levels in various areas of Iran and the examination of the impact of travel restrictions and containment 
measures.

The predictions so far have been conducted in various countries, including Iran, China, France, Brazil, 
the United States, Italy, Japan, Spain, Germany, and South Korea, among many others. However, these 
predictions have some weaknesses:

Most of these articles are written using a comparative approach, and their primary focus is not on 
predicting the trends of the disease in their respective countries.

1.

Some articles have made short-term predictions.2.

In the LSTM prediction model, due to its complexity and extensive computational processes, there is 
a significant potential for measurement errors.

3.

To the best of our knowledge, there is a lack of comprehensive modeling studies specifically 
focusing on the prediction of COVID-19 progression in the three countries of Lithuania, Belarus, and 
Thailand.

4.

Thus, in this paper, statistical data from these three countries—Lithuania, Belarus, and Thailand—have 
been processed using the SIR model, a mathematical computational model whose functionality has been 
proven. The article emphasizes long-term predictive results.

Materials and methods
This study uses a mathematical modeling approach to simulate the spread of COVID-19 in Lithuania, 
Belarus, and Thailand. The classical SIR model was applied to predict the progression of the disease in these 
countries. To ensure the accuracy and applicability of the model, real-time case data were used to estimate 
key parameters over distinct phases of the pandemic in each country. This section outlines the data sources, 
selection criteria, modeling framework, segmentation approach, software tools, and methodological 
considerations that collectively ensure transparency, reproducibility, and alignment with evolving 
pandemic dynamics.
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Data source and inclusion criteria

Daily confirmed COVID-19 case data for Lithuania, Belarus, and Thailand were obtained from Worldometer 
(https://www.worldometers.info/coronavirus/), accessed on September 30, 2021. This publicly available 
platform aggregates official case data from national health authorities, offering consistent and comparable 
data across countries. Moreover, the selection of Lithuania, Belarus, and Thailand was based on the 
availability of reliable, continuous case data, as well as the diversity in their pandemic response strategies, 
healthcare infrastructure, and population densities. These countries represent three distinct pandemic 
contexts, allowing the SIR model to be tested across varying epidemiological environments, thereby 
enhancing the robustness of the analysis.

In addition, all simulations and parameter estimations were conducted using MATLAB version R2021a 
(MathWorks, Inc., Natick, Massachusetts, USA). Curve fitting procedures were performed using MATLAB’s 
built-in Nonlinear Least Squares (lsqcurvefit) function, and visualizations were generated using MATLAB 
plotting tools.

SIR model

The SIR model is a fundamental mathematical tool used to analyze the spread of infectious diseases within 
a population [22]. It simplifies the population into three compartments: Susceptible (S), Infectious (I), and 
Recovered (R). Equation 1 represents this model mathematically:

Susceptible (S): This group consists of healthy individuals who haven’t contracted the disease yet but 
can become infected [2].

Infectious (I): This category represents individuals who are currently infected and can transmit the 
disease to others [2].

Recovered (R): This group includes individuals who have recovered from the disease and are no longer 
infectious [2]. It’s important to note that for some diseases, recovered individuals may become susceptible 
again (e.g., the common cold).

These variables (S, I, and R) change dynamically as the disease progresses. The rate of infection is 
denoted by “r”, which represents the constant rate at which susceptible individuals come into contact with 
infected individuals and become infected themselves [29]. The other parameter, denoted by the Greek 
letter beta (β), represents the constant rate at which infected individuals are removed from the infectious 
pool, typically due to recovery or, unfortunately, mortality [29].

The SIR model’s compartmentalization of disease states (Figure 1A) and its application to COVID-19 for 
analyzing and predicting disease spread, informing public health decisions, and implementing control 
measures (Figure 1B). While the top portion of Figure 1 illustrates a standard SIR model, the bottom 
portion adapts it for COVID-19 by accounting for the possibility of recovered individuals becoming 
susceptible again, a concept crucial for understanding COVID-19 transmission.

The total number of people is defined as N, which is the sum of three groups [30], as shown in 
Equation 2.

Prevalence and transmission rates are also shown in Equation 3.

Where R0 indicates whether a disease is rapidly subsiding or causing an epidemic in the community 
[21, 31].

https://www.worldometers.info/coronavirus/
https://www.worldometers.info/coronavirus/
https://www.worldometers.info/coronavirus/
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Figure 1. The SIR model’s structure and applications. (A) Compartmentalization of disease states; (B) application to COVID-
19 for analyzing and predicting disease spread, informing public health decisions, and implementing control measures

Time segmentation

To account for changes in transmission dynamics over the course of the pandemic, the data for each 
country were divided into distinct phases based on observed inflection points in case trends, which often 
corresponded to major policy changes such as lockdowns, reopening phases, or mass vaccination 
campaigns. Each phase was modeled separately, with β and γ recalculated for each period, ensuring the 
model remained responsive to evolving real-world conditions.

Uncertainty analysis

This study primarily relied on fitting the SIR model to reported COVID-19 case data using a deterministic 
curve-fitting approach, where key parameters—the infection rate (β) and removal rate (γ)—were 
estimated directly from observed data during distinct time periods. While this method provides a practical 
way to align the model with real-world data, it does not explicitly quantify the uncertainty associated with 
these parameter estimates. In particular, factors such as underreported infections, variations in testing 
capacity, changes in public health interventions, and differences in population behavior can introduce 
unavoidable uncertainties into both parameter estimation and model projections. These sources of 
variability were not formally analyzed in the current study, representing a recognized limitation of the 
approach. The focus of this research was to evaluate the applicability of the classical SIR model in capturing 
the overall epidemic trends across three countries with varying pandemic responses.

Methods of using the model for data

The model was implemented using MATLAB software, employing mathematical functions such as 
fminsearch and lambertw to test the code. In cases where the predicted results from Equation 4 do not 
align, the equation seeks an appropriate solution within the range of [–1e6, 1e6] for forecasting purposes.

The simulation data for three countries—Lithuania, Belarus, and Thailand—were obtained from the 
Worldmeter website and analyzed. Ultimately, three model graphs were generated, depicting the 
parameter values on each graph. These values include R, which denotes the primary (total) rate, and R0, 
which indicates the infection rate predicting the disease’s growth. If R0 < 1, it means the number of patients 
is decreasing, and the disease is declining. However, if R0 > 1, it signifies an increasing trend in the spread of 
the disease. Other parameters include:

β indicates the infection rate, measuring the daily increase in patients.•

γ represents the removal rate, measuring the daily count of removed patients, including recovered or 
deceased individuals.

•

N represents the population of the respective country.•
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Cend indicates the final number of infected individuals.•

Send represents the difference between the final number of infected individuals and the population of 
the respective country.

•

Root mean square error (RMSE) signifies the Root Mean Square Error in regression.•

Data used in this study were collected from the Worldometer website, which provides real-time global 
COVID-19 data (Available at: https://www.worldometers.info/coronavirus/, accessed on 30 September 
2021). The simulation and modeling processes were conducted using MATLAB version R2021a 
(MathWorks, Inc., Natick, Massachusetts, USA).

Results
Numerical simulation

In this section, the results of modeling for Lithuania, Belarus, and Thailand are investigated.

Lithuania

The estimation of this disease model has been compared using real data from Lithuania from March 14, 
2020, to September 30, 2021. As shown in Table 1 and Figure 2, R0, indicating the rate of disease spread, 
initially rises until February, followed by a declining trend.

Table 1. Statistical analysis of Lithuania

Date R R0 β γ N Cend Send RMSE

Mar, Apr 2020 0.52 1.56 0.391 0.25 2,375 1,501 874 61
May, Jun 2020 0.18 3 0.196 0.065 1,750 1,601 149 106
Jul, Aug 2020 0.14 3.31 0.19 0.058 2,041 1,956 85 290
Sep, Oct 2020 3.94 4.11 0.106 0.06 262,221 257,592 4,629 2,222
Nov, Dec 2020 0.95 1.48 0.167 0.113 403,045 229,730 173,315 1,693
Jan, Feb 2021 0.64 46.19 0.059 0.001 197,727 197,727 0 2,181
Mar, Apr 2021 0.24 2.89 0.077 0.027 241,947 225,512 16,435 5,486
May, Jun 2021 0.45 1.89 0.114 0.06 285,025 218,140 66,885 20,169
Jul, Aug 2021 0.38 2.07 0.103 0.05 272,252 221,929 50,323 28,112
Sep 2021 0.3 2.49 0.044 0.018 330,765 294,672 36,093 13,583
RMSE: root mean square error

This decline is significantly attributed to vaccination efforts after that date, which have substantially 
reduced the rate of disease spread. Additionally, β is decreasing, signifying a lower infection rate. The 
highest removal rate is observed in March and April. Considering that the contact rate was high in these 
months and the previous month, it can be hypothesized that this high removal rate is a consequence of an 
increased number of fatalities during that period.

Belarus

To compare the model estimates for this disease, data from the actual situation in Belarus, from March 5, 
2020, to September 30, 2021, were utilized. According to Table 2 and Figure 3, R0, which indicates the 
disease’s transmission rate, was significantly increasing until November 2020, suggesting a considerable 
increase in disease progression. After a two-month decline, it returned to its ascending trend. Following 
that, there has been a relatively descending trend.

Importantly, the R0 values mostly fall within a narrow range, displaying little variation. This suggests 
the disease has mostly followed a consistent pattern with few notable fluctuations. Additionally, looking at 
β, the lowest infection rate occurred in November and December, while the infection rate was fairly 
consistent throughout the remaining months. Regarding γ, the highest removal rate was observed in March 
and April. This observation, considering the infection and disease progression rates in these months and 

https://www.worldometers.info/coronavirus/
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Figure 2. Modeling disease trends in Lithuania

Table 2. Statistical data analysis of Belarus

Date R R0 β γ N Cend Send RMSE

Mar, Apr 2020 0.99 1.61 0.412 0.256 33,071 21,476 11,595 213
May, Jun 2020 0.61 1.81 0.163 0.09 91,312 67,370 23,942 1,046
Jul, Aug 2020 0.33 2.33 0.121 0.052 81,451 70,675 10,776 959
Sep, Oct 2020 0.16 3.17 0.145 0.046 78,177 74,360 3,817 6,693
Nov, Dec 2020 2.13 2.58 0.013 0.005 960,801 869,242 91,559 13,048
Jan, Feb 2021 0.86 1.28 0.129 0.101 703,069 285,667 417,402 52,817
Mar, Apr 2021 0.65 2.27 0.037 0.016 439,475 376,379 63,096 41,727
May, Jun 2021 0.91 1.13 0.123 0.109 445,956 19,976 425,980 26,217
Jul, Aug 2021 0.65 1.76 0.03 0.017 718,322 517,572 200,750 21,119
Sep 2021 0.93 1.1 0.097 0.088 3,248,480 590,778 2,657,700 14,715
RMSE: root mean square error

the prior month, supports the hypothesis that the increase in the removal rate might be due to increased 
fatalities.

Thailand

For the comparison of the model estimation for this disease, actual data from Thailand spanning from 
March 25, 2020, to September 10, 2021, have been employed. According to Table 3 and Figure 4, the 
disease, after a steep ascent with a remarkably high slope, suddenly experienced a decline, showing fewer 
cases each day. This reflects the vaccination efforts of Thailand’s population. This country, renowned as a 
global tourist destination, enforced a nationwide quarantine, prohibiting the entry of foreign nationals, thus 
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Figure 3. Modeling disease trends in Lithuania

Table 3. Statistical analysis of Thailand

Date R R0 β γ N Cend Send RMSE

Mar, Apr 2020 0.51 1.5 0.294 0.196 58 40 18 2
May, Jun 2020 0.15 4.52 0.251 0.055 2,975 2,940 35 53
Jul, Aug 2020 0.15 3.2 0.258 0.081 3,235 3,081 154 56
Sep, Oct 2020 0.15 3.2 0.167 0.052 3,409 3,248 161 121
Nov, Dec 2020 0.18 3.01 0.292 0.097 3,151 2,965 186 348
Jan, Feb 2021 0.42 1.97 0.212 0.108 4,592 3,618 974 551
Mar, Apr 2021 0.79 1.48 0.173 0.117 49,165 27,884 21,281 2,900
May, Jun 2021 2.2 2.21 0.025 0.011 898,976 760,951 138,025 2,977
Jul, Aug 2021 1.03 1.48 0.106 0.071 847,056 482,523 364,533 6,503
Sep 2021 0.94 1.5 0.126 0.084 3,431,830 1,997,320 1,434,510 35,022
RMSE: root mean square error

steering the disease into a downward trend. The disease’s rate of spread, R0, was considerably high up to 
November 2020, indicating an intense ascending trend with a steep incline, followed by a noticeable 
decline. With regard to the infection rate, β, it was notably lower in the last eight months than in the 
preceding months. Furthermore, the removal rate, 𝛾, exhibited its highest values in the months of March 
and April, signifying the most recoveries and removals. Considering the abrupt contraction of the disease 
rate and the vaccination campaigns after this date, it can be inferred that the increase in this rate was not 
due to fatalities but was rather the result of recoveries. One distinguishing feature in the graph of this 
country, in comparison to the other two countries, is the arc curvature of the graph, which neither Belarus 
nor Lithuania exhibits.
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Figure 4. Modeling the trend of disease in Thailand

Progression of disease in the future

To calculate the disease trend, Tables 4 and 5 are used, which display the sum, mean, sample variance, and 
comprehensive variance.

By comparing the tables, we can see that the predictions are close to the actual values and that the 
prediction error is low. In Thailand, the disease reached its peak on August 21, 2021, and the number of 
cases has consistently declined since then. This decline can be attributed to vaccination efforts, adherence 
to health protocols, and the enforcement of quarantine measures. As shown in Figure 5A, the disease trend 
was consistently rising from the beginning of the outbreak until August 21, 2021, and has significantly 
declined afterward.

In Lithuania, the disease peaked on December 18, 2020. Following the initial peak, upward trends were 
observed on May 1, 2021, and September 23, 2021. However, the overall trend remains descending. 
Figure 5B shows a relatively consistent pattern, with no significant fluctuations in the trajectory. While 
there is a brief upward trend in the near future, the general trend is steadily declining compared to the 
peak.

In Belarus, the disease trend is predicted to follow a declining trajectory, with the peak occurring on 
March 22, 2021. The disease exhibited an upward trend until November 28, 2020, reached relative stability, 
followed by a mild downward trend from March 22, 2021, and a slight upward trend from August 5, 2021. 
As depicted in Figure 5C, the trend in Belarus lacks significant steep inclines or declines, with daily patient 
numbers remaining relatively stable.
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Table 4. Data and forecasting data from three countries

Parameters Lithuanian data 
forecast

Belarusian data 
forecast

Thai data 
forecast

Lithuanian 
data

Belarus 
data

Thai data

Sum 289,553 509,498 1,299,964 306,611 503,697 1,353,422
Average 530.3168 918.0144 2,380.886 547.5196 899.4589 2,278.48822
Sample variance 314,359 161,824.3 28,259,246 567,080.5 491,405.7 27,260,180.9
Community variance 313,783.2 161,532.8 28,207,489 566,067.8 490,528.2 27,214,288

Table 5. Error and absolute error of three countries

Parameters Lithuanian data 
forecast

Belarusian data 
forecast

Thai data 
forecast

Lithuanian 
data

Belarus 
data

Thai data

Sum 188,896 216,631 291,904 –17,058 5,801 –53,458
Average 317.4723 364.857 490.595 –28.6689 9.74958 –89.8454
Sample variance 153,089.1 187,072.1 937,763.7 253,224.1 319,758.4 170,167
Community variance 152,831.8 186,757.7 36,187.6 252,798.6 319,221 1,168,799

Figure 5. New daily patients. (A) In Thailand; (B) in Lithuania; (C) in Belarus. In Belarus, the trend shows a peak on March 22, 
2021, followed by stability, mild fluctuations, and relatively stable daily patient numbers without significant changes

Discussion
Implications for public health and policy

The findings from this study provide valuable insights into the progression and control of COVID-19, with 
direct implications for public health and policymaking. By leveraging the SIR model, decision-makers can 
gain a clearer understanding of infection dynamics, enabling more informed responses to the pandemic. 
This section discusses how the results can be applied to public health strategies and outlines actionable 
recommendations to mitigate the spread of the disease. The SIR model’s ability to forecast disease trends 
can aid governments in designing targeted vaccination campaigns. For instance, prioritizing high-
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transmission regions or groups based on model projections can significantly reduce infection rates. In 
Thailand, where the disease’s peak was mitigated by extensive vaccination efforts, the model underscores 
the importance of timely interventions. Policymakers can also use these projections to optimize resource 
allocation, ensuring vaccines reach areas predicted to experience rising cases.

The results highlight critical periods of disease escalation and decline, which can inform the timing and 
intensity of interventions such as lockdowns, travel restrictions, and public health campaigns. For example, 
in Belarus, the model identifies a stable period following an initial peak, providing an opportunity to 
reinforce preventive measures and avoid a resurgence. Similarly, the insights for Lithuania suggest that 
timely interventions during upward trends could have curtailed subsequent outbreaks. Beyond managing 
COVID-19, the insights from this study can be generalized to improve preparedness for future pandemics. 
The SIR model’s adaptability to varying parameters makes it a robust tool for simulating different 
scenarios. Policymakers can use these simulations to design contingency plans, stockpile resources, and 
develop infrastructure to address potential crises more effectively. This proactive approach is essential for 
mitigating the impact of infectious diseases in a globalized world.

A critical gap often exists between scientific models and their application in policymaking. By 
presenting clear, data-driven insights, this study bridges that gap, enabling policymakers to base decisions 
on robust evidence. For instance, the model’s ability to quantify key parameters like the basic reproduction 
number (R0) and removal rates provides concrete metrics for evaluating the effectiveness of interventions. 
Such data can guide policies that balance public health needs with economic and social considerations. The 
study’s focus on three diverse countries—Thailand, Lithuania, and Belarus—demonstrates the model’s 
versatility across different contexts. By sharing methodologies and insights internationally, governments 
can foster collaboration to combat global health challenges. The adoption of similar models in regions with 
varying healthcare capacities and socio-economic conditions could lead to a more coordinated global 
response, particularly in resource-limited settings. The integration of predictive modeling into public health 
strategies has transformative potential. By providing actionable insights and supporting data-driven 
decision-making, the findings of this study contribute to more effective management of COVID-19 and lay a 
foundation for future applications in pandemic control.

Challenges and limitations

Although the classical SIR model serves as a foundational tool for capturing overarching pandemic trends, it 
relies on the simplifying assumption of homogeneous mixing, where all individuals are equally likely to 
interact and transmit the virus. This assumption does not fully reflect real-world heterogeneity, where 
factors such as population density, urban-rural differences, age structure, and mobility patterns contribute 
to variable transmission dynamics. Additionally, the model does not explicitly account for asymptomatic 
carriers, who play a significant role in COVID-19 transmission, nor does it incorporate the evolving impact 
of variants of concern, which demonstrate varying transmissibility and immune escape potential. Future 
extensions of this work could benefit from adopting more refined compartmental models, such as SEIR 
models, that explicitly include exposed and asymptomatic compartments, or agent-based simulations 
capable of capturing population-level heterogeneity. While such models offer enhanced realism, they also 
introduce greater complexity, requiring more granular data and computational resources. Balancing model 
simplicity with epidemiological realism remains a key challenge in pandemic modeling.

Notably, while the SIR model was originally developed to capture the dynamics of infectious disease 
outbreaks, its fundamental compartmental structure offers potential adaptability for modeling certain non-
communicable health conditions at the population level. In the context of cardiovascular diseases, heart 
failure, or acute coronary syndromes, a modified SIR-like framework could theoretically classify individuals 
into compartments such as at-risk (susceptible), diagnosed (infected), and managed or stabilized 
(recovered). However, applying the SIR model to non-communicable diseases would require substantial 
modifications to account for chronic risk factors, progressive physiological deterioration, individualized 
treatment responses, and the prolonged time horizons characteristic of these conditions. Unlike infectious 
diseases, which typically involve short-term transmission dynamics, chronic diseases demand models that 
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integrate lifestyle factors, genetic predispositions, environmental exposures, and the cumulative effects of 
medical interventions. Despite these challenges, the core strengths of compartmental modeling—its clarity, 
simplicity, and ability to describe population-level transitions—make it an attractive candidate for hybrid 
frameworks that merge epidemiological modeling with chronic disease surveillance and health systems 
data. Exploring these interdisciplinary applications could enhance both predictive modeling and long-term 
public health planning, particularly in understanding the cascading effects of public health crises, such as 
pandemics, on the incidence and progression of chronic diseases.

This study applied the SIR model to analyze COVID-19 dynamics in Lithuania, Belarus, and Thailand—
three countries selected to capture varying pandemic responses and available data reliability. While the 
model demonstrated strong predictive performance in these cases, its broader applicability across nations 
with differing healthcare infrastructures, population densities, and pandemic policies warrants further 
investigation. The flexibility of the SIR framework allows parameter adjustments to account for context-
specific factors, but successful adaptation requires recalibration using local epidemiological data. Future 
work will focus on expanding the model’s application to a more diverse set of countries, enabling a more 
comprehensive evaluation of its generalizability and robustness across different public health 
environments.

Moreover, while the SIR model successfully captured the overall COVID-19 trends in Lithuania, Belarus, 
and Thailand, it is important to acknowledge the inherent uncertainties associated with parameter 
estimation in real-time epidemic modeling. Factors such as underreported cases, variability in testing 
coverage, changes in population behavior, and evolving public health interventions contribute to 
substantial uncertainty in key model parameters, including transmission rates and recovery rates. Future 
extensions of this work will incorporate formal uncertainty quantification methods, such as Monte Carlo 
simulations and sensitivity analyses, to better assess the robustness of model projections and provide 
confidence intervals for key outputs. Such approaches would enhance the reliability of model-based 
forecasts and strengthen their utility for informing public health strategies under conditions of incomplete 
or evolving data.

Conclusion

Mathematical modeling theories play a pivotal role in the exploration of pandemics, particularly in the 
context of infectious diseases. These models are instrumental in guiding societies and decision-makers in 
implementing strategies to better combat widespread illnesses. This article focuses on the utilization of the 
SIR model, which, aside from its computational simplicity, furnishes vital and pertinent outcomes. It 
efficiently anticipates the trajectory of a disease, making it an indispensable tool. Simulations using 
mathematical modeling were conducted through MATLAB software to predict future patient numbers in 
three countries: Thailand, Lithuania, and Belarus. Additionally, the tally of recovered patients was 
determined using the MATLAB function ‘fminsearch’. By applying these models to real-time data from these 
countries, forecasts have been generated to indicate the points when the disease reaches its peak, 
effectively highlighting the ascending and descending patterns of the disease. Notably, while Thailand 
exhibits a drastic downward trend, the graphs for the other two countries illustrate consistent slopes, 
indicating the absence of widespread vaccination. The slight descent observed in specific instances suggests 
the enforcement of government-mandated quarantines in these countries.
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