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Abstract
The inflammasome is a critical inflammatory signaling cascade. Diverse events, including infections or 
tissue damage, activate it. It is essential in regulating the early stages of wound healing but is overall 
downregulated in the later stages. If uncontrolled inflammasome expression occurs, healing tends to stall 
and chronic wounds ensue due to the release of proinflammatory cytokines, such as interleukin (IL)-1β and 
IL-18. Furthermore, if left unchecked, chronically activated inflammasomes can promote a healing milieu 
when none is warranted and this can cause fibroproliferative skin disorders such as keloids and 
hypertrophic scars. This review examines the role of the inflammasome and what is known about its 
regulation in each phase of wound healing. This review also discusses the contribution of inflammasome 
activation during stalled wound healing, such as that found in chronic wounds and diabetic ulcers. It 
discusses the hyperactivation of the inflammasome during fibrotic skin pathology. A better understanding 
of the contribution of inflammasome signaling in various stages of wound healing could lead to identifying 
more effective therapeutics for treating different aspects of abnormal wound healing.
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Introduction
Wound healing is a fundamental event needed for the reconstruction of damaged tissues. It is a finely 
orchestrated, complex, and dynamic process [1, 2]. Most wounds are minor and usually close within 
12–14 days; however, resolving more extensive wounds may take several months to a year to complete the 
healing process [2, 3]. While the skin is most often studied because it is easily monitored, wound healing 
can occur in any organ. In normal skin, epidermal and dermal layers exist in homeostasis [4], and this 
protects the body from external insults, pathogens, and the skin’s microbiome [5, 6]. Any trauma that 
breaches this protective barrier will initiate wound healing [7].
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Inflammasomes are essential inflammatory complexes that have been extensively studied in the last 
decade, primarily in the context of disease. However, immediately after wounding, they become activated 
and play a significant role in the healing process by secreting cytokines that kick-start the healing process. 
At the same time, activating these inflammatory complexes is involved in the clearance of pathogens that 
may contaminate the wound bed. The activity of the inflammasomes is essential in the early phases of 
healing and is downregulated in the later stages. This review discusses the role of the inflammasome at 
each stage of healing. It will be presented from the perspective of skin healing because it has well-defined 
stages that have been extensively studied. At the end of the review, we will discuss targeting nucleotide-
binding domain, leucine-rich repeat, and pyrin domain-containing protein (NLRP)3 as a therapeutic 
modality for treating chronic wounds, using diabetic ulcers and burn wounds as examples. We will also 
discuss the contribution of inflammasome activation in developing fibroproliferative scars and targeting its 
activation to alleviate this aberrant healing process.

Healing of the skin and inflammasome activation
There are four well-described phases attributed to wound healing: hemostasis (lasting 0–several hours 
post-injury), the inflammatory phase (1–3 days), the proliferative phase (4–12 days), and the remodeling 
phase (21 days–1 year) [2, 3, 8–10]. Each phase is tightly regulated, but there is some overlap between 
them [2, 3, 8–10]. Dysregulation in these steps can result in impaired healing or excessive scarring.

Due to the injury and damage to the cells, inflammasomes become activated and contribute to wound 
healing by secreting proinflammatory cytokines that attract cells [11–15], which aids in the repair process. 
These secreted cytokines also recruit inflammatory cells, such as macrophages [11, 12] and T cells [13, 14], 
to clear away the damaged cells and pathogens. The release of tissue factor is crucial in the clotting cascade 
and mediating tissue inflammation [16]. Fibroblasts are also recruited after wounding [15, 17], and secrete 
products to aid the healing. They are much more than a source of extracellular matrix scaffolding. They are 
essential sentinel cells that, when damaged, instigate the wound repair process and participate by 
producing and responding to cytokines and chemokines. They have functional inflammasomes that become 
activated during critical wound-healing phases, and this helps to promote healing.

Depending on the initiating mechanism, activation of the inflammasome can run a well-defined course 
with the resolution of inflammation and healing of the injury or be continuous, resulting in fibrosis [18] or a 
chronic wound [19]. The acute response to an initiating event (tissue injury) with a resolution of the injury 
versus a chronic reaction leading to unresolved disease and fibrosis is not entirely known. We speculate 
that acute injury may resolve on the clearance of the initiating signal (pathogen, virus, chemical, etc.). In 
contrast, chronic wounds result from a pathogen or irritant that is not cleared, causing continuous 
inflammasome activation and interleukin (IL)-1β and IL-18 processing and release.

Inflammasomes are activated in the first two phases of wound healing, which start the healing cascade. 
Still, in the later phases of healing, they are downregulated to promote wound resolution. Several 
inflammasomes have been implicated in the initial stages of efficient wound closure. These include NLRP1, 
NLRP3, and NLR family caspase activation and recruitment domain-containing (NLRC)4. Hu and colleagues 
[20] found that the mice’s interstrain differences in wound healing correlated with various NLRP1 paralogs, 
which altered the production of macrophage inflammatory protein-1a by keratinocytes. Other studies have 
shown the importance of NLRP3 in wound healing due to the activation of caspase-1 and the release of IL-
1β. The released cytokines attract fibroblasts and inflammatory cells to the site to aid wound healing. If 
there is a reduced inflammatory response, wound healing is delayed [21, 22]. To confirm this observation, 
delayed wound healing happens in NLRP3-KO mice, and this was recapitulated when NLRP3 chemical 
inhibitors were used. In addition, the absence of the AIM2 (absent in melanoma 2) inflammasome also 
slows the rate of wound closure [23]. However, in contrast, the sustained activation of NLRP3 can hinder 
wound healing [24]. This is because the regenerated tissues continue to be damaged due to the release of 
cytokines and the recruitment of inflammatory cells [25].
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The role of the inflammasome in the hemostasis phase
When exposed to the environment during skin injury, the exposed collagen starts the intrinsic and extrinsic 
clotting cascades [26]. The bleeding causes aggregation of platelets and the formation of a fibrin clot that 
usually occurs within minutes of the injury. The serine protease signaling cascade regulates blood clotting 
[27, 28]. It is a tightly regulated cascade, ensuring coagulation occurs only when needed. The damaged 
tissues leak adenosine diphosphate, causing platelet aggregation and adhesion to damaged collagens. 
Platelets initiate wound healing [29] by secreting thrombin and fibrin, which interact with and enhance the 
clotting cascade [28]. The formation of a fibrin clot further strengthens platelet aggregation and stabilizes 
the clot. Platelets secrete platelet-derived growth factor and TGF-β [29], which causes the recruitment of 
inflammatory cells and fibroblasts to the injured site [7, 30]. Platelets also enhance the activation of the 
inflammasome in macrophages and monocytes [31], kickstarting the inflammatory response. Platelets do 
not have DNA and do not transcribe NLRP3 on demand, but they express NLRP3 [32]. Studies investigating 
platelets in NLRP3-KO mice noted that bleeding times were approximately 4 times longer, even though the 
number of platelets was unchanged compared to that found in their wild-type counterparts [33]. There was 
also reduced platelet accumulation at the wound site [33, 34]. Further confirming NLRP3 expression in 
platelets, a study investigated patients with sickle cell disease [35]. It was found that platelets in sickle cell 
disease were activated, and there was increased expression of caspase-1, which was further elevated 
during sickle cell crisis [35]. These studies were further recapitulated in Towne sickle cell disease mice, 
demonstrating that clotting was elevated in homozygous mice compared to wild-type and heterozygous 
[35].

Nevertheless, platelets influence nearby cells, as shown in a study by Rolfes et al. [31], demonstrating 
that platelet products activate toll-like receptor-4, the receptor for advanced glycation end products and 
CD36, causing the activation of NLRP3 in nearby cells (Figure 1). Co-culture methods show that platelets 
enhance inflammasome activation in innate cells. In the absence of platelets, NLRP3 activation and 
production of IL-1α, IL-1β, and IL-18 from macrophages, monocytes, and neutrophils were reduced [31]. 
Inhibition of these components lowered IL-1β, TNF-α, and caspase-1 activity in human monocyte-derived 
macrophages [31]. The inflammasomes play a prominent role in the pro-inflammatory aspects of platelets 
[32, 36].

Inflammasome products secreted from other cells also mediate platelet activation [37], resulting in 
cyclical events and adding to the signaling milieu in the damaged tissues. Ischemic reperfusion can also play 
a prominent role in tissue damage at the local wound site [38], further activating various inflammasomes 
[39]. If IL-1 is blocked with antibodies or the inflammasome is inhibited, reperfusion injury is ablated [40, 
41]. Another study found that the inhibition of caspase-1 significantly reduced fibrin deposition in the clot 
[42]. The release of thrombin activates NLRP3 in various tissue cells [43, 44], further correlating 
inflammasomes with the hemostasis phase of wound healing (Figure 2).

The role of the inflammasome in the inflammatory phase
Once the fibrin clot has formed, the inflammatory phase begins, and depending on the size of the injury, this 
phase may last up to 4 days [7, 30]. The extravasation of neutrophils from blood vessels to the injury site is 
an automatic response. This process also occurs with sterile injury. Due to the initial tissue damage, there is 
a loss of blood and secondary tissue injury, triggering the release of endogenous danger signals called 
damage-associated molecular patterns [45–47]. These alarmins further facilitate the activation of 
inflammasomes, causing the release of cytokines that further attract inflammatory cells to the injured site. 
This phase primarily involves recruiting inflammatory cells into the wound in response to the release of 
chemokines such as intracellular adhesion molecule-1, vascular cell adhesion molecule-1, and E-selectin. 
Cytokines such as IL-1β and IL-18, processed by an activated inflammasome, indirectly attract cells. IL-1β 
induces monocyte chemoattractant protein-1 [48], while monocyte chemoattractant protein-1 induces IL-
1β expression in monocytes [49].
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Figure 1. Inflammasome activation and signaling in the early stages of wound healing. Platelets secrete molecules that 
activate the NLRP3 inflammasome in the early stages of wound healing. This helps to promote factors (platelet-derived factors, 
IL-1β, IL-18, etc.) that enhance cell recruitment and replication to start the wound healing process. IL: interleukin; NLRP: 
nucleotide-binding domain, leucine-rich repeat, and pyrin domain-containing protein. Created in BioRender. Artlett, C. (2025) 
https://BioRender.com/p12v164

In the early stages of wound healing, inflammatory cells capable of phagocytosis infiltrate the site. 
Phagocytosis is one of the main mechanisms of the innate immune response and is critical in wound 
healing. Although most cells can phagocytose, not all are “professional” phagocytes. Neutrophils, 
macrophages, and monocytes are considered to be professional phagocytes that infiltrate damaged tissue 
and phagocytose cellular debris, such as proteins and fragments from damaged cells. They also phagocytose 
any microorganisms found within the injured tissue [50]. This process provides the first line of defense 
against infection. One indirect result of phagocytosis is that fibrin is broken down, further attracting 
phagocytes to the injured site [51]. The recruitment of macrophages into the tissues provides an additional 
line of defense in preventing or limiting infection. Macrophages phagocytose any bacteria that neutrophils 
cannot remove. Furthermore, the macrophages secrete various chemotactic attractants and growth factors, 
initiating healing. Growth factors and chemoattractants are critical regulators of the wound-healing 
process. They cause the proliferation and migration of fibroblasts to the injured tissue, starting the second 
phase of wound healing [7, 51–54]. Initial studies suggest an enhanced inflammatory response during the 
early stages is required for efficient wound healing [55]. Without NLRP3, there is delayed angiogenesis, re-
epithelialization, and the development of granulation tissue [56]. These observations were also 
recapitulated in caspase-1 deficient mice [56], suggesting that the downstream products of an activated 
inflammasome are essential in the early stages of wound healing. The lack of NLRP3 reduces the 
inflammation in wounded tissue with less IL-6 and tissue repair factors such as matrix metalloproteinase-9, 
epidermal growth factor, and vascular endothelial growth factor in NLRP3-KO skin [57].

The inflammatory phase begins with the transient expression of IL-1β. IL-1β is an essential cytokine 
involved in wound healing. IL-1β secretion peaks on day one and declines between days 3 and 7 post-injury 
[55, 58]. IL-1β is necessary for the initiation of wound healing as it enhances the secretion of TGF-β1 [59], 
IL-6 [60], and vascular endothelial growth factor [60], and these cytokines are also needed for collagen 
deposition, cell replication, and wound repair. The expression of these proinflammatory cytokines starts to 
decline after 5 days [55]. However, the extended duration of IL-1β released into a wound during prolonged 
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Figure 2. Inflammasome activation during the normal process of wound healing. The activity of the inflammasome is 
prominent in the hemostasis and the inflammatory phases, where it is required to secrete cytokines that promote cell recruitment 
and kick-start the healing process. It is downregulated in later phases of the wound-healing process. IL: interleukin. Created in 
BioRender. Artlett, C. (2025) https://BioRender.com/a90o856

healing can promote fibrosis. A study investigating deep incisional wound healing underscored this 
observation. Mice lacking the IL-1 receptor had improved wound healing with less fibrosis, and they found 
that this was due to reduced TGF-β, IL-6, and the vascular endothelial growth factor in the wounds [61]. 
Furthermore, the authors identified more collagenolytic activity at the wound site [61]. These observations 
suggest that extended wound healing time is more likely to be pro-fibrotic, which will be discussed below.

While most studies investigate NLRP3, Qin et al. [62] investigated the role of NLRC3 during cutaneous 
wound healing. They found that the ablation of NLRC3 promoted an enhanced inflammatory response in 
the wounds. This observation was specific to neutrophils, while macrophages remained unchanged. This 
suggests that NLRC3 suppresses inflammation in the early stages of wound healing [62].

The proliferative phase
Granulation tissue formation is necessary to enhance wound healing, and this feature characterizes the 
proliferative phase. It generally starts about four days after the initial injury. If the wound is relatively 
minor, this process can last up to 21 days [30]. The proliferative phase is characterized by red granulation 
tissue at the base of the wound. During this stage, M2 macrophages that function in repair should dominate 
the wound environment [63]. The chemo-attractants and various growth factors secreted in the wound bed 
recruit fibroblasts to the injury [64–66]. To further enhance this phase of wound healing, fibroblasts secrete 
fibroblast growth factor-2, platelet-derived growth factor, and TGF-β1. This sustains fibroblast proliferation 
and migration via autocrine signaling [67]. The primary role of the fibroblast is to pull together the wound 
margins and rebuild the damaged extracellular matrix. The fibrin clot is gradually replaced with granulated 
tissue. Type I collagen, which is stronger and more stable, will eventually replace this temporary matrix 
patch [7, 50–52, 68].

https://BioRender.com/a90o856
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Fibroblasts are critical cells in the wound-healing process. They deposit collagen and other 
extracellular matrix proteins that different cell types use to migrate along. This starts the process of re-
epithelialization and angiogenesis. Intriguingly, fibroblasts from the fascia migrate into the wound, 
dragging the fascia extracellular matrix substrates into the wound site [69]. Correa-Gallegos et al. [69] 
proposed that the fascia comprised a “…specialized prefabricated kit of sentry fibroblasts, embedded within 
a movable sealant…”. This kit becomes activated with the injury and can seal the wound. These specialized 
fibroblasts are tagged with engrail-1 [70], which depends on p120 (catenin delta-1) expression and is 
enhanced after wounding. Silencing p120 reduced the trafficking of the facia fibroblasts and extracellular 
matrix into the wound site, which augmented wound healing [70]. Two additional proteins were found to 
be involved in the mobilization of the fascia into the wound, including N-cadherin [71] and connexin-43 
[72].

While fibroblasts are migrating into the wound, keratinocytes proliferate and migrate along the 
extracellular matrix, helping to seal the wound’s surface from the environment [30]. Keratinocytes migrate 
between the scab and the new granulation tissue to seal the wound from the external environment [73]. 
This helps to reestablish the skin’s barrier function. Keratinocytes also produce extracellular matrix 
proteins, including laminin and type IV collagen IV, further enhancing this protective barrier [7, 30]. 
Angiogenesis begins when endothelial cells migrate along fibronectin into the site [7, 30, 74]. Angiogenesis 
provides the necessary oxygenation in the injured tissue that fibroblasts and keratinocytes require [50, 75], 
as the injury is hypoxic [76].

At this stage of wound healing, pro-inflammatory cytokine expression (IL-1β, IL-6, and TNF-α) is 
typically downregulated, progressively declining from about day 5 onwards [55]. After completing this 
phase, all pro-inflammatory cytokines have returned to basal levels [55]. However, at the same time, anti-
inflammatory cytokine expression increases, including TGF-β1, IL-10, and IL-4 [77], and collagen synthesis 
is increased (Figure 2).

Myofibroblasts contract the wound margins during this phase, pulling the edges together and secreting 
collagen and other extracellular matrix proteins to fill the wound. They use cytoskeletal stress fibers and 
focal adhesions to bind to fibronectin and collagen, pulling the matrix together and contracting the wound 
size [50, 51, 75, 77]. The secretion of types I and III collagens reinforces the patch and strengthens the 
extracellular matrix [78, 79]. Early in this process, myofibroblasts secrete more type III collagen, especially 
in the early stages of tissue granulation [80], but as the healing progresses, myofibroblasts switch to type I 
collagen [81]. Type III collagen provides a flexible and temporary scaffold for new tissue formation, 
allowing for rapid cell migration and angiogenesis. This is because type III collagen is loosely organized. 
Later, in the healing process, type I collagen replaces type III collagen during wound maturation, and the 
extracellular matrix gains tensile strength. Studies have found that type III collagen regulates wound repair 
and matrix remodeling by attenuating myofibroblast activation [80].

While the activation of most inflammasomes progressively declines, intriguingly, there is still a role for 
the inflammasome in this stage of healing. Zhao et al. [57] reported that myofibroblast-macrophage 
interactions were crucial for wound healing in these final stages and that prostaglandin E might be a 
downstream effector of NLRP3 activation. Prostaglandin E is essential in many stages of wound healing, 
such as cell recruitment in the early stages [82], and is needed for angiogenesis and cell proliferation in the 
later stages of healing [83].

In the proliferative phase, NLRC3 inflammasome slowed cell proliferation and hindered migration. In 
their studies, Qin et al. [62] found that wound healing was accelerated without NLRC3 because cell 
proliferation and migration were enhanced. They also show that overexpressing NLRC3 in HEK293T cells 
proliferation and migration reduced. This suggests that NLRC3 activity controls the rate of re-epithelization 
of the wound. In other studies by Naik et al. [84], the authors showed the role of AIM2 inflammasome 
activation in accelerated skin healing, but only after repeated wounding, suggesting that the cells in 
wounded skin have a memory of prior wounding. This enhanced re-epithelization was dependent on IL-1β 
only [84].
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The remodeling phase
Fibroblasts are a heterogeneous population of cells supporting the integrity of tissues. They are also the 
primary cells that orchestrate the remodeling phase of wound healing, where the collagen fibers become 
organized and cross-linked and have increased tensile strength in the fiber. To conclude, the strength of the 
new collagen within the wound is only about 80% as strong as the collagen laid down under homeostasis 
[50, 51]. A recent study examining the fibroblast population within wounds found that those expressing the 
CD26 cell surface protein secreted most collagen into the wound [85]. Once the remodeling phase is 
complete, myofibroblasts undergo apoptosis [86, 87], while some return to quiescent fibroblasts [86]. The 
inflammasome does not appear to play any significant role in this stage of wound healing (Figure 2).

The most crucial cytokine in this phase of wound healing is TGF-β1, as it enhances collagen deposition 
into damaged tissue and downregulates inflammation during the remodeling phase. During this phase of 
healing, the extracellular matrix is also cross-linked and reorganized into stronger stabilized fibrils within 
the injured tissues [88]. However, excessive or extended expression of TGF-β1 during this phase promotes 
scar tissue development [89]. Importantly, IL-10 is produced by CD4 T cells [90], but is also involved in the 
downregulation of inflammation in this phase. By influencing inflammation, extracellular matrix 
remodeling, and fibroblast activity, IL-10 has been linked to reduced scar formation [91]. TGF-β1 and IL-10 
are temporally expressed, and TGF-β1 transiently activates myofibroblasts, whereupon they become de-
differentiated in the presence of IL-10 [92].

Inflammasomes, inflammation, and chronic wounds
Wound healing treatments have been discussed for over 5,000 years, and various therapies have been 
described [93–95]. Basic principles to enhance wound healing, such as washing the wound, applying 
plasters, and dressing the wounds, have long been known [94, 95]. In regenerative medicine, the success or 
failure of a healing wound is contingent upon extracellular matrix synthesis, cell proliferation, and the 
migration of fibroblasts and keratinocytes into the wound bed; however, these processes are delayed in 
chronic wounds such as venous stasis ulcers or when chronic diseases such as diabetes are present. A 
wound is considered to be chronic when it fails to heal in a timely manner [96].

Excessive inflammation due to an overactive inflammasome in the wound bed impairs wound healing, 
and effective therapies for chronic wound healing must disrupt this pro-inflammatory environment. 
Targeting inflammasomes to promote wound healing has recently gained popularity (Table 1). However, 
this targeting must be done strategically and not early when it is needed for healing. For example, in a burn 
model, the systemic administration of the NLRP3 inhibitor, glyburide, during the early stages of wound 
healing reduced inflammation and delayed healing [97]. However, when glyburide was given after the 
inflammatory phase, wound healing was not impeded [97]. This suggests that inflammation and 
inflammasome activation are beneficial and necessary for wound healing only in the early phases, as 
discussed above.

Table 1. The effects of targeting NLRP3 during wound healing

Chemical Effect on NLRP3 Outcome Reference

Genistein Increased Delayed healing [136]
Zol Increased Delayed healing [137]
Metformin Decreased Faster wound healing [138]
Paeoniflorin Decreased Promoted healing [139, 140]
Calcitriol Decreased Promoted healing [141]
Sanguisorba officinalis Decreased Promoted healing [110]
MF-094 Decreased Accelerated healing [108]
Glyburide/Glibenclamide Decreased Improved or delayed wound healing depending on time of 

administration
[97]

MFG-E8 Decreased Accelerated healing [142]
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Table 1. The effects of targeting NLRP3 during wound healing (continued)

Chemical Effect on NLRP3 Outcome Reference

Fenofibrate Decreased Accelerated healing [143]
N-Acetylcysteine Decreased Improved healing [144]
MCC950 Inhibited Improved healing or no effect [109, 145]
Melatonin Inhibited Increased keratinocyte proliferation [146]
3,4-Methylenedioxy-β-
nitrostyrene

Inhibited Improved healing [129]

Bletilla striata polysaccharide Inhibited Accelerated healing [147]
Lactobacillus plantarum Inhibited Improved healing [111, 112]
Bay 11-7082 Inhibited Improved healing [144]
Adapted from [118], CC BY. NLRP: nucleotide-binding domain, leucine-rich repeat, and pyrin domain-containing protein

Diabetic wound management: targeting the inflammasome
Treating diabetic wounds has traditionally been done by reducing hyperglycemia, antimicrobials, 
debridement, grafts, and off-loading techniques [98]. Diabetic wounds do not heal quickly as they have been 
stalled at the inflammatory phase [99–102]. The extended release of proinflammatory cytokines is 
detrimental to the wound healing process, and in severe cases, patients are at risk for foot amputation 
[103]. The prolonged dysregulation of NLRP3 fosters the chronic inflammation that delays the healing [24] 
which is particularly evident in diabetic ulcers, where these wounds fail to heal. The hyperglycemia 
environment promotes NLRP3, caspase-1, and IL-1β expression in inflammatory cells [104], contributing to 
the inflammation. Furthermore, a comparison of NLRP3 expression showed 3-fold more in diabetic wounds 
than in non-diabetic wounds [99], and the presence of neutrophil extracellular traps promotes NLRP3-
mediated inflammation [105]. These factors contribute to the proinflammatory environment in the wound 
that slows healing.

In diabetic wounds lasting longer than 3 months, there was a high expression of NLRP3, caspase-1, IL-
1β, and IL-18 [24]. Recent studies have found that directly targeting and/or downregulating the NLRP3 
inflammasome activity promotes healing. Wound dressings that lower IL-1 expression and simultaneously 
increase vascular endothelial growth factor have enhanced skin healing [106, 107]. A study employing MF-
094, an inhibitor of the deubiquitinase enzyme, ubiquitin-specific protease-30 [108], was beneficial in 
promoting healing. NLRP3 activation depends on its deubiquitylation for activation, and when MF-094 
inhibited this process, NLRP3 activity was reduced [108]. Downstream proteins such as active caspase-1 
and IL-1β were also decreased, and wound healing was enhanced in a rat model of diabetes [108]. Another 
compound, MCC950, has also shown promise in promoting the healing of diabetic wounds. MCC950 targets 
NLRP3 activation and inhibits the release of IL-1β and IL-18 into the wound [109]. Sanguisorba officinalis is 
a medicinal root used in Chinese medicine for wound healing. Although its exact mechanism of action is 
unknown, a study using extracts from Sanguisorba officinalis demonstrated increased healing of diabetic 
wounds via reduced NLRP3, caspase-1, and IL-1β expression [110]. Intriguingly, Lactobacillus plantarum 
was found to promote the healing of diabetic foot wounds by inhibiting NLRP3 activation and pyroptosis 
[111, 112]. Some plant extracts are efficacious at reducing NLRP3 expression, including garcinol [113], aloe 
vera [114], curcumin [115], bitter melon [116], and carnosic acid extracted from rosemary [117], to name a 
few. Other natural and synthetic compounds inhibit the NLRP3 inflammasome and promote animal wound 
healing (Table 1). Ding et al. [118] reviewed other inhibitors of NLRP3 and their efficacy in diabetic 
wounds. Whether these substances successfully make it through clinical trials is yet to be determined.

Burn wound management: targeting the inflammasome
Burn wounds also represent a significant clinical problem [119], and activation of the NLRP3 and NLRP6 
have been reported [120, 121]. In successfully healing burn wounds, NRLP3 activation is beneficial in the 
early stages of healing [97, 122], which returns to baseline levels in the later phases [123]. However, the 
persistent activation of the NLRP3 inflammasome is associated with a poor prognosis in patients with 
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septic burns [123, 124]. In burn wounds that do not heal, there is an increased incidence of pro-
inflammatory M1 macrophages strongly expressing NLRP3 [125].

Animal models have been used to determine the success of various NLRP3 inhibitors for the treatment 
of chronic burn wounds. Bay 11-7082 irreversibly inhibits IBa phosphorylation [126], and lowers NLRP3 
expression [127]. In a burn model, Bay 11-7082 reduced acute lung injury and lowered inflammatory 
cytokine levels [128]. As discussed above, the timely administration of glyburide to the burn was critical in 
its successful healing [97]. 3,4-Methylenedioxy-β-nitrostyrene inhibits NLRP3 assembly while sparing AIM2 
and NLRC4 activity [129]. This was shown to reduce NLRP3 activation in burn wounds and promote the 
healing time of the wounds [130].

Skin fibrosis: wound healing gone awry
Keloid and hypertrophic scars are fibroproliferative scars that develop during skin healing [131]. There is a 
genetic component and familial component to the development of keloids and hypertrophic scars [132]. 
The direct role of the inflammasome has not been extensively studied in these abnormal healing processes. 
However, in systemic sclerosis, skin fibrosis is dependent on the aberrant expression of the inflammasomes 
and elevated caspase-1 activity [18]. Recently, it was found that the aberrant expression of NLRP3 
activation contributes to the development of keloids and hypertrophic scars. This is thought to be due to 
the Warburg effect and the abnormal expression of glycolytic enzymes [133]. Targeting the abnormal 
glucose metabolism with the molecule shikonin, a pyruvate kinase M2 inhibitor, lowered NLRP3 activity 
and improved the healing of the skin without the overt development of the fibroproliferative scar [133]. 
Further studies have shown that the elevated NLRP3 signaling is mediated by Notch1 expression [134]. 
Notch1 expression is controlled by autophagy [135]. Thus, Lee et al. [134] found that using rapamycin to 
induce autophagy in keloid fibroblasts and this suppressed Notch1 and NLRP3 proteins, effectively 
resolving fibrosis and lowering myofibroblast expression. These studies suggest that elevated NLRP3 
contributes to these types of scars and that targeting the inflammasome might contribute to better 
management in genetically susceptible individuals.

Conclusions
The inflammasome is critically involved in the proper sequence of wound healing phases. It is highly 
elevated in the hemostasis and inflammatory phases stages, modestly expressed in the proliferative phase, 
and largely absent in the remodeling phase. The chronic expression of the NLRP3 inflammasome plays a 
significant role in wounds that have stalled in their healing. This causes the prolonged expression of 
inflammatory cytokines. Blocking the inflammasome in the later stages of wound healing may benefit 
chronic wounds and help enhance their healing. This will lower inflammatory cytokines secreted by an 
activated inflammasome and drive the expression of anti-inflammatory cytokines such as TGF-β and IL-10, 
which is needed for collagen deposition in the wound.
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