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Abstract
Aim: This study investigated the effects of successful hepatitis C virus (HCV) treatment with direct-acting 
antivirals (DAAs) on CD4+ T cell recovery in HIV/HCV coinfected immunological non-responders (INRs) to 
antiretroviral therapy (ART). The study assessed changes in CD4+ and CD8+ T cell counts, immune 
activation, inflammation, T cell exhaustion, and the size of the naïve CD4+ T cell pool following DAA therapy 
to determine whether HCV suppression enhances immune restoration in coinfected INRs.
Methods: Three groups were analyzed: DAA-treated INRs (n = 9), untreated HIV/HCV coinfected INRs (n = 
10), and healthy controls (n = 10). Plasma cytokine levels and viral loads were quantified using multiplex 
immunoassay and real-time PCR. Peripheral blood mononuclear cells were analyzed via flow cytometry to 
evaluate T cell subsets, activation (HLA-DR+CD38+), and exhaustion markers (PD-1, TIGIT).
Results: Both INR groups showed significantly lower CD4+ T cell counts and elevated CD4+ T cell 
proliferation compared to controls, with no significant difference between DAA-treated and untreated 
patients. Deficits in naïve CD4+ T cells were observed in both INR groups but reached statistical significance 
only in untreated individuals. Activated CD4+ and CD8+ T cells and proinflammatory cytokines of IFN and 
IL-10 families remained elevated in INRs after DAA treatment. DAAs reduced PD-1 and TIGIT expression on 
CD4+ T cells, suggesting attenuated exhaustion, but did not alter exhausted T cell frequencies in CD4+ or 
CD8+ T cells.
Conclusions: HCV coinfection in people living with HIV (PLWH) not only increases the risk of 
immunological non-response to ART but also has lasting impacts on the immune system. Even after 
successful HCV clearance with DAAs, INRs experience persistent immune dysregulation, including low CD4+ 
T cell counts, deficits in the naïve CD4+ T cell compartment, and ongoing inflammation. This indicates that 
HCV eradication alone is insufficient to reverse the long-term immune damage resulting from coinfection.
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Introduction
Hepatitis C virus (HCV) coinfection is common among people living with HIV (PLWH), affecting millions 
worldwide [1]. This is largely due to the overlap in transmission routes, particularly intravenous drug use 
[2]. Current estimates indicate that approximately 39 million individuals are PLWH [3], and 4 to 5 million of 
them are also chronically infected with HCV [4]. The prevalence among PLWH is particularly high in 
Eastern Europe, reaching up to 80% in some countries [5]. The presence of HIV complicates the 
pathogenesis of HCV infection, leading to accelerated liver disease progression, including rapid fibrosis and 
cirrhosis [6]. Furthermore, HIV/HCV coinfected subjects face an increased risk of developing hepatocellular 
carcinoma at an earlier age compared to those with HCV alone. In contrast, the impact of HCV on the 
pathogenesis of HIV infection is less well understood and is an area of ongoing investigation.

One of the most significant complications associated with HCV in PLWH is an increased risk of 
immunological non-response to antiretroviral therapy (ART) [7, 8]. Specifically, it occurs 3.5 times more 
often in PLWH with HCV coinfection compared to those without HCV [9]. In these immunological non-
responders (INRs), HIV suppression does not coincide with an increase in CD4+ T lymphocyte counts, 
putting them at higher risk of morbidity and mortality [10–12]. The adverse effects of hepatitis C on CD4+ T 
cell regeneration in PLWH are believed to be linked to the high levels of immune activation and 
inflammation caused by chronic HCV infection [13–16]. This persistent inflammation contributes to CD4+ T 
cell exhaustion, as evidenced by the elevated frequency of cells expressing inhibitory receptors [17–19]. 
Another factor associated with poor CD4+ T cell restoration is the profound deficiency in the naïve CD4+ T 
cell compartment observed in HCV-coinfected INRs [20].

The development of direct-acting antivirals (DAAs) has enabled sustained HCV suppression in 
HIV/HCV coinfected INRs. This raises the possibility that successful treatment with DAAs may normalize 
the indexes of immune activation, inflammation, T cell exhaustion, and the size of the naïve T cell pool, 
consequently improving CD4+ T lymphocyte regeneration. In the current study, we assessed these 
parameters in DAA-treated HIV/HCV coinfected INRs to elucidate the effects of successful HCV therapy on 
CD4+ T cell recovery.

Materials and methods
Study participants

The study included HIV/HCV coinfected patients who had received ART for more than two years and had an 
undetectable viral load (< 50 copies/mL). INRs were defined as patients with the number of peripheral 
CD4+ T lymphocytes less than 350/μL. The study group comprised 9 HIV/HCV coinfected INRs who had 
successfully completed a DAA regimen at least 12 months prior to the start of the study. The control groups 
consisted of 10 INRs who did not receive DAAs, and 10 healthy volunteers without HIV and HCV infections.

Sample collection

Blood samples were collected from the cubital  vein into Vacutainer tubes containing 
ethylenediaminetetraacetic acid (EDTA). CD4+ T lymphocyte counts were assessed using a BD Simultest™ 
IMK-Lymphocyte kit (Cat #340182, BD Biosciences, USA) and a CytoFLEX S flow cytometer (Beckman 
Coulter, USA). Blood plasma was separated by centrifugation (3,000 rpm for 10 min), and cytokine levels 
were measured using a Bio-Plex Pro™ Human Inflammation Panel 1, 37-Plex kit (Cat #171AL001M, Bio-Rad, 
USA) on a MAGPIX analyzer (Luminex Corporation, USA). HIV and HCV viral loads were determined by real-
time polymerase chain reaction (PCR) using commercial kits: AmpliSense HIVMonitor-FRT (ILS, Russia) 
and RT-Hepatogen-C Quantitative (DNA-Technology, Russia), respectively. DAA therapy was considered 
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successful if the HCV viral load was reduced to less than 200 copies/mL, which was the sensitivity limit of 
the test system.

Peripheral blood mononuclear cells (PBMCs) were isolated by density centrifugation using Diacoll 
(1.077 g/mL, Diaem, Russia). The isolated cells were then stored in liquid nitrogen in a cryopreservation 
medium containing 90% fetal bovine serum (FBS, Biowest, France) and 10% dimethyl sulfoxide (DMSO; 
AppliChem, Germany). On the day of the study, the cryopreserved cells were thawed at 37°C, washed in 
10 mL of complete culture medium [RPMI-1640, supplemented with 10% FBS, 100 U/mL penicillin, and 
100 μg/mL streptomycin (Sigma, USA)], and then washed in 10 mL of Dulbecco’s phosphate buffered saline 
(DPBS; Gibco, USA).

Flow cytometry

PBMCs were analyzed using the CytoFLEX S flow cytometer. Viable cells were identified by the absence of 
staining with the Zombie UV Fixable Viability Kit (BioLegend, USA). The following antibodies were used: 1. 
Anti-CD3-BV605, anti-CD4-PE, and anti-CD8-BV510 (BioLegend, USA) to identify CD4+ and CD8+ T 
lymphocytes. 2. Anti-CCR7-PE/Cy7 (BioLegend, USA) and anti-CD45RO-APC-eFluor780 (Invitrogen, USA) to 
classify CD4+ and CD8+ T cells into naïve (CCR7+CD45R0–), central memory (TCM, CCR7+CD45R0+), effector 
memory (TEM, CCR7–CD45R0+), and effector memory cells re-expressing CD45RA (TEMRA, CCR7–CD45R0–). 
3. Anti-TIGIT-AF488 and anti-PD-1-PB (BioLegend, USA) to assess the expression of the exhaustion 
markers. 4. Anti-CD38-PE/Fire700 (BioLegend, USA) and anti-HLA-DR-APC-R700 (BD Biosciences, USA) to 
identify activated cells.

Statistical analysis

Statistical analysis and data visualization were performed using the GraphPad Prism version 8.0.1 
(GraphPad Prism Software Inc., San Diego, CA, USA). Quantitative data in the text and tables are presented 
as medians and 25–75 percentiles. To compare two groups of quantitative data, we used the Mann-Whitney 
U-test. For more than two groups, we used ANOVA with Tukey’s corrections.

Results
Study cohort

All groups were comparable in terms of age (Table 1). Both genders were equally represented in the 
HCV+DAA– INR group and the healthy control group. However, the DAA-treated INR group consisted solely 
of men. HIV viral load did not differ among the groups of INRs. Notably, the DAA-treated INRs had been 
infected with HIV and treated with ART for a longer duration compared to the other HIV infected group.

Table 1. Clinical characteristics

Parameter HIV+HCV+

DAA– INRs
HIV+HCV–

DAA+ INRs
Healthy controls

Number of enrollments 10 9 10
Age (years) 41 (40–42) 43 (35–47) 41 (40–44)
Males (%) 50

pHCV–DAA+ < 0.05
100
pHC < 0.05

50

HIV-infection duration (years) 8.0 (6.5–10.0)

pHCV–DAA+ < 0.05

15.0 (10.0–20.5) ––

ART duration (years) 3.0 (2.0–4.7)

pHCV–DAA+ < 0.05

6.0 (5.0–11.0) ––

HIV viral load (copies/mL) < 50※ < 50※ ––
Time elapsed post-DAA therapy (months) –– 21.5 (20.0–27.3) ––
The data are presented as medians and interquartile ranges. ※: the test-system sensitivity limit; ––: no data; ART: antiretroviral 
therapy; DAA: direct-acting antivirals; INRs: immunological non-responders. Significance of differences between groups was 
established based on the ANOVA test with Tukey’s corrections
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T lymphocyte counts and proliferation levels

The CD4+ T cell counts were comparable between DAA-treated (313; 157–352) and HCV-coinfected INRs 
(202; 183–297; Figure 1A). However, both patient groups had significantly lower CD4+ T cell counts 
compared to healthy control subjects [707 (646–880); p < 0.001]. A similar pattern was observed when 
comparing the CD4+/CD8+ T cell ratio between INRs and healthy individuals (p < 0.001; Figure 1B). In 
contrast, the CD8+ T cell counts were similar across all groups studied (p > 0.05; Figure 1C).

In PLWH, the CD4+ T cell pool is regenerated through homeostatic proliferation [21, 22]. Consequently, 
the frequency of proliferating (Ki-67+) CD4+ T lymphocytes was significantly higher in both groups of INRs 
compared to healthy control subjects (p < 0.01; Figure 2A).

The frequency of Ki-67+ CD4+ T lymphocytes negatively correlated with the blood CD4+ T cell counts 
across all three study groups (R = –0.742, p < 0.0001). This suggests that the high level of CD4+ T 
lymphocyte proliferation observed in the DAA-treated group may be associated with the overall deficiency 
in CD4+ T cell counts.

The proportion of proliferating CD8+ T cells was similar between HCV coinfected INRs and healthy 
volunteers (p > 0.05; Figure 2B). However, in patients who underwent DAA treatment, the proportion of 
proliferating CD8+ T cells was significantly higher compared to healthy controls (p < 0.05; Figure 2). Hence, 
DAA treatment appears to enhance CD8+ T cell proliferation, potentially reflecting an improved immune 
response following successful HCV suppression.

CD4+ and CD8+ T cell subsets

We analyzed the frequency of CD4+ T cells at different stages of differentiation and found no significant 
differences in the frequencies of TCM, TEM, and TEMRA between the three groups. However, we did find a 
significant deficiency in naïve CD4+ T cells in the group of HCV coinfected INRs compared to healthy control 
subjects (p < 0.05; Figure 3). Patients who underwent DAA treatment also exhibited lower frequencies of 
naïve CD4+ T cells compared to healthy volunteers, but these differences were not statistically significant (p
 > 0.05). The frequency of naïve, TCM, TEM, and TEMRA CD8+ T cells did not differ significantly between HCV 
coinfected INRs, DAA-treated INRs, and healthy individuals (p > 0.05).

Immune activation and inflammation levels

The proportion of activated (CD38+HLA-DR+) CD4+ T lymphocytes was significantly higher in both groups 
of INRs compared to healthy individuals (p < 0.01; Figure 4A). Similarly, the frequency of activated CD8+ T 
cells was also significantly higher in INRs (p < 0.05; Figure 4B). These findings indicate that the level of 
immune activation remains elevated in HCV coinfected INRs even after DAA treatment.

To assess systemic inflammation, we measured proinflammatory cytokine levels in the blood plasma of 
participants from three groups. Interferon family members (IFN-α, IFN-β, and IFN-γ) were significantly 
elevated in the blood plasma of HCV-coinfected INRs (p < 0.05, Figure 5). In INRs who underwent DAA 
treatment, IFN-α and IFN-γ levels remained elevated and were higher than in healthy controls. In contrast, 
IFN-β levels significantly decreased (p < 0.05) post-treatment, but still exceeded those of healthy 
individuals (p < 0.05).

Plasma levels of cytokines from the IL-10 family were elevated in INRs. Specifically, we observed 
significantly higher levels of IL-20, IL-28A, and IL-29 in both HCV-coinfected and DAA-treated patients 
compared to controls (p < 0.05, Figure 6). Although there was a trend toward decreased IL-28A levels in 
DAA-treated INRs, this change did not reach statistical significance.

T cell exhaustion levels

We analyzed the expression of the inhibitory receptors programmed cell death protein 1 (PD-1) and T cell 
immunoreceptor with immunoglobulin and ITIM domain (TIGIT), which are commonly used to evaluate T 
cell exhaustion in PLWH [23–25]. We found significantly increased frequencies of PD-1+ (p < 0.01) and 
TIGIT+ CD4+ T lymphocytes in both groups of INRs compared to healthy individuals (p < 0.05; Figure 7A, C).
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Figure 1. T lymphocyte counts (A, C) and CD4+/CD8+ T cell ratio (B) in HIV/HCV coinfected (HIV+HCV+DAA–) and DAA-
treated (HIV+HCV–DAA+) immunological non-responders and healthy control group (HC). Medians (horizontal lines within 
rectangles), interquartile ranges (rectangles), and 10–90% intervals (vertical lines) are shown. ***: p < 0.001; ANOVA test with 
Tukey’s corrections

Figure 2. The frequency of proliferating (Ki-67+) CD4+ (A) and CD8+ T cells (B) HIV/HCV coinfected (HIV+HCV+DAA–) and 
DAA-treated (HIV+HCV–DAA+) immunological non-responders and healthy control group (HC). Medians (horizontal lines 
within rectangles), interquartile ranges (rectangles), and 10–90% intervals (vertical lines) are shown. *: p < 0.05, **: p < 0.01, ***: 
p < 0.001; ANOVA test with Tukey’s corrections

Figure 3. The frequency of naïve, central memory (TCM), effector memory (TEM), and terminally differentiated effector 
memory (TEMRA) CD4+ T cells in HIV/HCV coinfected (HIV+HCV+DAA–) and DAA-treated (HIV+HCV–DAA+) immunological 
non-responders and healthy control group (HC). *: p < 0.05 (HIV+HCV+DAA– vs. HC); ANOVA test with Tukey’s corrections
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Figure 4. The frequency of activated (CD38+HLA-DR+) CD4+ (A) and CD8+ T cells (B) in HIV/HCV coinfected 
(HIV+HCV+DAA–) and DAA-treated (HIV+HCV–DAA+) immunological non-responders and healthy control group (HC). 
Medians (horizontal lines within rectangles), interquartile ranges (rectangles), and 10–90% intervals (vertical lines) are shown. *: 
p < 0.05, **: p < 0.01; ANOVA test with Tukey’s corrections

Figure 5. The concentrations of IFN-α, IFN-β, and IFN-γ in blood plasma of HIV/HCV coinfected (HIV+HCV+DAA–) and 
DAA-treated (HIV+HCV–DAA+) immunological non-responders and healthy donors (HC). Medians (bars) and interquartile 
ranges (vertical lines) are shown. *: p < 0.05, **: p < 0.01, ***: p < 0.001; ANOVA test with Tukey’s corrections

However, in DAA-treated patients, the expression levels of the inhibitory receptors PD-1 (p < 0.001) 
and TIGIT (p < 0.05) on the surface of CD4+ T lymphocytes were significantly lower than those observed in 
HCV coinfected INRs without DAA treatment. These levels were comparable to those of healthy volunteers 
(p > 0.05; Figure 7B, D). Our findings suggest that in HCV coinfected INRs, DAA treatment may effectively 
reduce the exhaustion of CD4+ T lymphocytes, potentially restoring their functionality.

In HCV coinfected INRs, the proportion of CD8+ PD-1+ T lymphocytes was significantly higher 
compared to the healthy controls (p < 0.05; Figure 8A). After the DAA-treatment, the frequency of CD8+ PD-
1+ T cells remained elevated in INRs, but was not significantly different from HCV-coinfected patients or 
healthy individuals (p > 0.05). Expression levels of PD-1 were comparable across all groups studied (p > 
0.05; Figure 8B). The frequency of CD8+ TIGIT+ T lymphocytes, as well as TIGIT expression levels, was 
similar across all three groups (p > 0.05; Figure 8C, D). It is important to note that TIGIT expression in CD8+ 
T cells is strongly correlated with differentiation status and is predominantly observed on cells exhibiting a 
memory phenotype [26]. Therefore, TIGIT may not accurately reflect the state of exhaustion in these cells.
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Figure 6. The concentrations of IL-20, IL-28A, and IL-29 in blood plasma of HIV/HCV coinfected (HIV+HCV+DAA–) and 
DAA-treated (HIV+HCV–DAA+) immunological non-responders and healthy donors (HC). Medians (bars) and interquartile 
ranges (vertical lines) are shown. *: p < 0.05, **: p < 0.01, ***: p < 0.001; ANOVA test with Tukey’s corrections

Figure 7. The frequency of CD4+ T cells expressing inhibitory receptors PD-1 and TIGIT (A and C), and their expression 
levels (B and D), in HIV/HCV coinfected (HIV+HCV+DAA–) and DAA-treated (HIV+HCV–DAA+) immunological non-
responders and healthy control group (HC). Medians (horizontal lines within rectangles), interquartile ranges (rectangles), 
and 10–90% intervals (vertical lines) are shown. *: p < 0.05, **: p < 0.01, ***: p < 0.001; ANOVA test with Tukey’s corrections; 
PD-1: programmed cell death protein 1; TIGIT: T cell immunoreceptor with immunoglobulin and ITIM domain

Figure 8. The frequency of CD8+ T cells expressing inhibitory receptors PD-1 and TIGIT (A and C), and their expression 
levels (B and D), in HIV/HCV coinfected (HIV+HCV+DAA–) and DAA-treated (HIV+HCV–DAA+) immunological non-
responders and healthy control group (HC). Medians (horizontal lines within rectangles), interquartile ranges (rectangles), 
and 10–90% intervals (vertical lines) are shown. *: p < 0.05; ANOVA test with Tukey’s corrections
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Discussion
In PLWH, hepatitis C coinfection increases the risk of immunological non-response to ART and rapid 
progression to AIDS [15]. However, new DAA therapies for hepatitis C have shown high success in achieving 
sustained virological response in HIV/HCV coinfected patients [27]. This has led to a reduction of liver-
related complications and improved overall health outcomes [28]. While DAAs are highly effective at 
eradicating HCV, their impact on the immune system of coinfected INRs is still an area of active 
investigation.

Our research shows that DAA treatment does not significantly improve CD4+ or CD8+ T cell counts in 
INRs. Other studies [28–30] also confirm that in PLWH, there are no substantial changes in these 
populations or the CD4+/CD8+ ratio after DAA therapy. The persistent deficits in CD4+ T cell counts and 
CD4+/CD8+ ratios observed in both the HCV-coinfected and DAA-treated INR groups, compared to healthy 
controls, suggest that HCV clearance alone is insufficient to reverse the long-term immunological damage 
caused by years of coinfection.

We observed that the deficits in the naïve CD4+ T cell compartment in HCV-coinfected INRs persist 
after successful DAA therapy. This persistence may be attributed to the significant impairment of thymic 
function associated with HCV coinfection. Studies have demonstrated that chronic HCV infection leads to 
reduced numbers of naive CD4+ T cells and compromised thymic output [31, 32]. In the context of HIV 
infection, it has been noted that HCV-coinfected patients have lower numbers of recent thymic emigrants 
compared to those with HIV alone [20]. Furthermore, the numbers of recent thymic emigrants are inversely 
correlated with levels of liver enzymes indicative of hepatic damage [20]. Notably, our findings suggest that 
thymic damage caused by chronic HCV infection may be irreversible, as the frequency of naïve CD4+ T cells 
does not increase following DAA therapy. Naïve CD4+ T cells play a crucial role in generating diverse 
antigen-specific immune responses and replenishing the memory T cell pool [33]. Consequently, the 
inability to replenish the naïve CD4+ T cell pool, even after successful HCV treatment, may impede effective 
immune reconstitution, leaving these patients vulnerable to opportunistic infections and other 
complications.

While naive T cells are necessary to replenish the diverse pool of T lymphocytes, in HIV infection, the 
main burden of regeneration lies with memory T cells [34]. During lymphopenia, they actively proliferate to 
increase their numbers [21, 22]. In the current study, we observed a negative correlation between the 
number of peripheral CD4+ T cells and their proliferation. This suggests that in both groups of INRs, 
homeostatic mechanisms are actively engaged in efforts to restore the CD4+ T cell pool. However, even after 
successful HCV eradication, the CD4+ T lymphocytes’ proliferation is insufficient to fully restore the immune 
system. In the meantime, the heightened proliferative activity of CD8+ T cells observed in the DAA-treated 
INRs suggests that successful HCV clearance can enhance the immune response mediated by the CD8+ T cell 
compartment. This may reflect an improved ability to mount effective antigen-specific responses following 
HCV eradication.

Previous research has shown that HCV-coinfected PLWH exhibit an increased proportion of activated 
CD4+ and CD8+ T lymphocytes, which is generally viewed as an unfavorable sign [35]. In HIV infection, the 
primary source of immune activation and inflammation is typically the damage to the gut epithelial barrier, 
which allows microbial products to translocate into systemic circulation [36]. HCV coinfection appears to 
impair hepatic clearance of microbial products, as indicated by increased plasma levels of 
lipopolysaccharide, which contributes to heightened immune activation in coinfected PLWH [20]. Most 
studies have reported a decline in immune activation markers following DAA treatment in HIV/HCV 
coinfected patients responding well to ART [37–40]. PLWH who respond effectively to ART also experience 
decreased systemic inflammatory markers, such as sCD163 and sCD14, after HCV eradication [27, 29]. 
However, our findings indicate that even after successful DAA therapy, INRs continue to display 
persistently elevated activation levels of CD4+ and CD8+ T cell populations, compared to healthy controls. 
Furthermore, in DAA-treated INRs, we observed persistently elevated plasma levels of type I and II 
interferons (IFN-α, IFN-β, IFN-γ) as well as IL-10 family cytokines (IL-20, IL-28A, IL-29). This suggests that 
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long-term damage from chronic HCV infection in INRs may be irreversible, and that hepatic clearance of 
bacterial products in these patients does not improve post-DAA treatment. This is particularly concerning, 
as chronic inflammation can have detrimental effects on immune function and T cell homeostasis. 
Prolonged exposure to high levels of cytokines like IFN-α, IFN-γ, and IL-10 family members has been linked 
to T cell dysfunction, exhaustion, and impaired regenerative capacity [41, 42]. Moreover, chronic type I 
interferon signaling has been identified as a key driver of HIV disease progression [43–46].

The regulation of T cell activity is crucial in the context of inflammation and heightened activation 
levels. Inhibitory receptors like PD-1 and TIGIT play a vital role in this process [47, 48]. However, 
prolonged and excessive expression of these receptors can lead to functional exhaustion of T cells, 
characterized by impaired effector functions and reduced proliferative capacity [19, 49, 50]. Our analysis 
revealed no significant differences in the frequencies of PD-1 and TIGIT-expressing CD4+ T cells between 
the DAA-treated and HCV coinfected INR groups. Interestingly, we observed that the expression levels of 
these inhibitory receptors were significantly lower in the DAA-treated INR group, resembling those of 
healthy subjects. This suggests that successful HCV clearance through DAA treatment can help reduce CD4+ 
T cell exhaustion in INRs. The present finding is crucial, as restoring the functional capacity of CD4+ T cells 
is essential for improving immune reconstitution in these patients.

It should be noted that this study has several limitations. The small sample size of 10 participants per 
group may limit the generalizability of the findings. Additionally, an imbalance in sex distribution, with one 
group of INRs predominantly consisting of men, could introduce confounding effects due to sex differences 
in immune and metabolic responses. Furthermore, although all patients were tested negative for hepatitis B 
virus (HBV), many may have a history of cytomegalovirus (CMV) infection, which could also influence 
immune parameters and potentially affect the results. Future studies involving larger and more diverse 
cohorts are warranted to validate and extend these results.

Conclusion

The HCV coinfection in PLWH not only increases the risk of immunological non-response to ART, but also 
has lasting impacts on the immune system of INRs. Importantly, the dysregulated immune profile persists 
in INRs even after HCV clearance, suggesting that the accumulated immune damage from years of 
coinfection may not be fully reversible. Although DAA treatment effectively eradicates HCV, it does not 
significantly improve CD4+ counts in INRs. The persistent deficits in the naïve CD4+ T cell compartment, 
along with ongoing immune activation and inflammation after DAA therapy, suggest that HCV clearance 
alone is insufficient to reverse long-term immune damage in these patients. Our findings suggest that 
successful HCV eradication may reduce CD4+ T cell exhaustion in INRs, as evidenced by decreased 
expression of inhibitory receptors on these cells. However, further investigation is needed to confirm this 
hypothesis. Overall, addressing immunological non-response to ART in HCV coinfected patients may 
require a more comprehensive approach. This could include interventions targeting the persistent 
inflammatory response and strategies aimed at regenerating the naïve CD4+ T cell compartment. Additional 
research is necessary to identify the optimal combination of treatments to restore immune homeostasis in 
INRs.
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