
Explor Med. 2025;6:1001320 | https://doi.org/10.37349/emed.2025.1001320 Page 1

© The Author(s) 2025. This is an Open Access article licensed under a Creative Commons Attribution 4.0 International 
License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, sharing, adaptation, distribution 
and reproduction in any medium or format, for any purpose, even commercially, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Exploration of Medicine

Open Access Original Article

Comparative analysis of differentially expressed genes in breast 
cancer across Asian and European populations: insights into 
molecular pathways and biomarkers
Prabhu Meganathan* , Sharvari Sawant , Shreshta Reddy

Hybrinomics Medical Innovations Private Limited, Bengaluru 560077, Karnataka, India

*Correspondence: Prabhu Meganathan, Hybrinomics Medical Innovations Private Limited, Bengaluru 560077, Karnataka, 
India. researchhyb@gmail.com
Academic Editor: Apostolos Zaravinos, European University Cyprus, Cyprus
Received: January 14, 2025  Accepted: March 20, 2025  Published: May 21, 2025

Cite this article: Meganathan P, Sawant S, Reddy S. Comparative analysis of differentially expressed genes in breast cancer 
across Asian and European populations: insights into molecular pathways and biomarkers. Explor Med. 2025;6:1001320. 
https://doi.org/10.37349/emed.2025.1001320

Abstract
Aim: Breast cancer (BC) is the most common malignancy among women and a leading cause of cancer-
related mortality. Early detection and prediction are crucial for prognosis and targeted therapy selection. 
This study investigates differences in BC gene expression between European and Asian populations by 
analysing differentially expressed genes (DEGs) and identifying potential biomarkers for diagnosis and 
treatment.
Methods: This study analyzed gene expression datasets from the NCBI Gene Expression Omnibus (GEO), 
including GSE15852 (Malaysia), GSE29044 (Saudi Arabia), GSE89116 (India), GSE61304 (Singapore), 
GSE29431 (Spain), GSE21422 (Germany), and GSE42568 (Ireland). DEGs were identified using GEO2R, with 
significance thresholds set at p < 0.05 and logFC > 2.0. Protein-protein interaction (PPI) networks were 
constructed using STRING and analyzed in Cytoscape, helping in identification of highly upregulated 
biomarker (HUB) genes. Functional enrichment was conducted using Enrichr-KG and GeneMANIA to 
explore pathway associations.
Results: Two common HUB genes, cluster of differentiation 36 (CD36) and leptin (LEP), were identified 
across five datasets, suggesting their universal relevance in BC. Additionally, caveolin-1 (CAV1) and 
perilipin 1 (PLIN1) were significant in the Asian datasets, while CAV1, insulin-like growth factor 1 (IGF1), 
apolipoprotein B (APOB), and peroxisome proliferator-activated receptor gamma (PPARG) were HUB genes 
in European datasets. Functional pathway analysis revealed that these genes are primarily involved in 
cholesterol metabolism, adipocytokine signaling, AMP-activated protein kinase (AMPK) regulation, and 
fatty acid metabolism, highlighting their role in BC progression.
Conclusions: CD36 and LEP are universal biomarkers with potential diagnostic and prognostic significance 
in BC. Region-specific HUB genes emphasize the need for precision medicine in treatment. Their role in 
cholesterol metabolism and adipocytokine signaling suggests potential therapeutic targets. CD36 and LEP 
could be used in liquid biopsy screening, and their metabolic function supports further investigation into 
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CD36 inhibitors, LEP antagonists, and PPARG modulators. Future studies should focus on large-scale 
validation and multi-omics approaches for personalized BC management.

Keywords
Breast cancer, differentially expressed genes (DEGs), Asian, European, biomarkers, highly upregulated 
biomarker (HUB) genes

Introduction
Breast cancer (BC) is the most frequently diagnosed cancer and leading cause of cancer-related mortality 
among women globally, with over 2.3 million new cases [1]. Despite significant advances in diagnostic and 
therapeutic lifestyle, and environmental factors, this heterogeneity poses a challenge for developing 
universally effective treatments and underscores the need for region-specific studies [2].

Several factors can increase the risk of developing BC, including aging, obesity, excessive alcohol 
consumption, family history of BC, exposure to radiation, reproductive history (such as the age of 
menstruation onset and age at first pregnancy), tobacco use, and postmenopausal hormone therapy. 
Interestingly, around half of BC cases develop in women who have no identifiable risk factors other than 
being female and over 40 [2].

BC is classified based on the affected breast cells. Ductal carcinoma in situ (DCIS) is a non-invasive 
cancer with abnormal cells in the duct lining that haven’t spread. Invasive ductal carcinoma (IDC) is the 
most common type, where cancer cells spread beyond the ducts into other breast tissues. Invasive lobular 
carcinoma (ILC) begins in the lobules and spreads to surrounding tissues. Triple-negative BC lacks 
estrogen, progesterone, and human epidermal growth factor receptor 2 (HER2) receptors, making it harder 
to treat. HER2-positive BC is characterized by high levels of the HER2 protein, which promotes cancer cell 
growth, but can be treated with targeted therapies [3].

Genetic biomarkers like breast cancer gene 1/2 (BRCA1/2), phosphatidylinositol-4,5-bisphosphate 3-
kinase catalytic subunit alpha (PIK3CA), GATA binding protein 3 (GATA3), tumor protein p53 (TP53), 
mitogen-activated protein kinase (MAPK) kinase kinase 1 (MAP3K1), partner and localizer of BRCA2 
(PALB2), and BRCA1 interacting protein C-terminal helicase 1 (BRIP1) genes provide insights into the 
origins and treatment of BC [4]. Risk factors for BC include increasing age, family history, genetic mutations 
[particularly in BRCA1, BRCA2, and checkpoint kinase 2 (CHEK2)], exposure to female hormones, early 
menstruation, a previous BC diagnosis, and certain non-cancerous breast conditions. Lifestyle factors such 
as being overweight, insufficient physical activity, and alcohol consumption can also increase risk slightly. 
Differential gene expression (DGE) is crucial in cancer research as it helps identify genes uniquely 
expressed in cancer versus normal tissues, understand tumor biology, develop targeted therapies, predict 
treatment responses, and uncover mechanisms of drug resistance [4, 5].

While the basic ingredients in European diet and Asian diet remain the same they differ in terms of 
preparation with Asian cuisine focusing more on spices and aromatics. South Asians also tend to eat fewer 
meals per day and later in the evening than Europeans [6]. Asian populations have lower body mass index 
(BMI), but have higher total and central adiposity for a given body weight when compared with a matched 
white population. They also have 3 to 5 percent higher total body fat compared to European populations. 
Obesity is a major risk factor in BC and changes in obesity patterns may provide an insight into BC risks in 
the two populations [7].

Materials and methods
Workflow: Figure 1. Such as Figure 1 shows the workflow followed in the paper.
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Figure 1. Workflow. GEO: Gene Expression Omnibus

Retrieval of datasets and extraction of differentially expressed genes

The NCBI-Gene Expression Omnibus (GEO) [8] is a publicly accessible database that houses microarray 
data. It is extensively utilized for gene expression datasets and platform records. For this BC, we obtained 
gene expression datasets from NCBI-GEO and analyzed them using GEO2R online tool. Differentially 
expressed genes (DEGs) were identified using Benjamini & Hochberg’s false discovery rate (FDR), 
considering genes with p < 0.05 and logFC > 2.0 as significantly upregulated, data available in the 
Supplementary material.

Construction of protein-protein interaction network

We constructed protein-protein interaction (PPI) networks using STRING [9] and analyzed them in 
Cytoscape (v3.10.2) using Molecular Complex Detection (MCODE) and CytoHUBba plugins. We selected 
genes with at least three overlapping algorithms to identify highly upregulated biomarker (HUB) genes.

In total, 456 upregulated DEGs were extracted from the four datasets, and were utilized to construct 
the PPI network for the Asian population, and 2,950 upregulated DEGs were extracted from the three 
datasets, and were utilized to construct the PPI network for the European population.

Visualization and analysis of the network

Further analysis and visualization of the network were conducted using Cytoscape software (v3.10.2) [10]. 
Respective STRING networks were analyzed on Cytoscape using MCODE and CytoHUBba plugins. The 
networks were analyzed by MCODE and densely connected regions (clusters) within large PPI networks 
were identified. CytoHUBba was used to identify important nodes and subnetworks [11]. All 12 algorithms 
in cytoHUBba were used for analysis, namely: Degree Centrality, Betweenness Centrality, Closeness 
Centrality, Stress Centrality, Eccentricity, Radiality, BottleNeck, Edge Percolated Component (EPC), 
Maximum Neighborhood Component (MNC), Density of MNC (DMNC), Clustering Coefficient, and Maximal 
Clique Centrality (MCC).

Functional analysis

Gene set enrichment was performed using Enrichr-KG and GeneMANIA online bioinformatic tools to 
explore associations with known metabolic pathways, particularly cholesterol metabolism, adipocytokine 
signaling, and AMP-activated protein kinase (AMPK) regulation. Pathways with an adjusted p-value of less 
than 0.005 were considered [12, 13].
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Figure 2. Graphical representation of DEGs. (a) Graphical representation of DEGs in Asian dataset; (b) graphical 
representation of DEGs in European dataset. DCIS: ductal carcinoma in situ; DEGs: differentially expressed genes; Exp: gene 
expression value; FC: fold change. Red points represent genes that are significantly upregulated in breast cancer. Blue points 
represent genes that are significantly upregulated in healthy tissue. Gray points represent genes that are not significantly 
different in expression between the two conditions

Results
GEO dataset processing to extract common DEGs

For BC, four GEO datasets with accession numbers GSE29044, GSE15852, GSE89116, and GSE61304 for the 
Asian population and three GEO datasets with accession numbers GSE42568, GSE21422, and GSE29431 for 
the European population were retrieved from the freely accessible NCBI-GEO database. GSE15852 https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE15852 (Malaysia), GSE29044 https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE29044 (Riyadh, Saudi Arabia), GSE89116 https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE89116 (New Delhi, India), and GSE61304 https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE61304 (Singapore) datasets were chosen for BC analysis of Asian population and 
GSE29431 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29431 (Barcelona, Spain), GSE21422 
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21422 (Berlin, Germany), and GSE42568 https:/
/www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE42568 (Dublin, Ireland) were chosen for the European 
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population. Samples were taken from patients of different age groups and at different stages of cancer 
progression, DGE analysis results of these datasets provide HUB genes whose expression in BC could be 
dependent on environmental factors, diet, genetic history, and lifestyle disorders. Set of images in Figure 2a 
graphical representation of DEGs in Asian datasets, and set of images in Figure 2b graphical representation 
of DEGs in European datasets.

PPI network

In total, 2,950 upregulated DEGs were extracted from the three datasets, and were utilized to construct the 
PPI network for the European population and 456 upregulated DEGs were extracted from the four datasets, 
and were utilized to construct the PPI network for the Asian population. The PPI networks obtained from 
STRING [9] are shown in supplementary figures: Figures S1–7.

Common gene selection

The common genes were shortlisted using Bioinformatics & Evolutionary Genomics Venn diagram 
generator tool [14]. In selected BC datasets, we selected the genes which had minimum of 3 common 
algorithms in that particular dataset, for each (intra-dataset comparison), files are attached in the 
Supplementary material under CytoHUBba algorithms and CytoHUBba analysis. Followed by, every 
dataset’s selected gene list to check for common genes within them (inter-dataset comparison) to get HUB 
genes. The lists are mentioned in Table 1.

Table 1. Selected gene list of all four Asian and European datasets

Asian European

Malaysia (GSE15852) New Delhi 
(GSE89116)

Riyadh 
(GSE29044)

Singapore 
(GSE61304)

Dublin 
(GSE42568)

Barcelona 
(GSE29431)

Berlin 
(GSE21422)

LEP (leptin) PLIN1 (perilipin 
1)

LEP PPM2 PPARG 
(peroxisome 
proliferator-
activated 
receptor 
gamma)

PPARG PPARG

LPL (lipoprotein 
lipase)

IGF1 (insulin-
like growth 
factor 1)

ALAS2 (5’-
aminolevulinate 
synthase 2)

CDK1 (cyclin-
dependent kinase 
1)

EGFR 
(epidermal 
growth factor 
receptor)

IGF1 LEP

CD36 (cluster of 
differentiation 36)

PPARG HBB 
(hemoglobin 
subunit beta)

AURKA (aurora 
kinase A)

LEP CDH5 
(cadherin-5)

CD34

GPD1 (glycerol-3-
phosphate 
dehydrogenase 1)

CD36 HBD 
(hemoglobin 
subunit delta)

NUF2 CCL2 
[chemokine (C-
C motif) ligand 
2]

LEP IGF1

ACACB (acetyl-CoA 
carboxylase beta)

LEP FCG3B (Fc 
gamma receptor 
IIIb)

EXO1 
(exonuclease 1)

IGF1 EGFR VWF (von 
willebrand 
factor)

PLIN1 IL6 (interleukin 
6)

PTG2 TOP2A (DNA 
topoisomerase II 
alpha)

CAV1 (caveolin-
1)

CD36 FGF2 
(fibroblast 
growth 
factor 2)

PCK1 
(phosphoenolpyruvate 
carboxykinase 1)

APOB 
(apolipoprotein 
B)

CD36 COMP (cartilage 
oligomeric matrix 
protein)

APOB FGF2 CXCL12 (C-
X-C motif 
chemokine 
ligand 12)

CFD (complement 
factor D)

FGF2 HBM 
(hemoglobin 
subunit mu)

COL11A1 
(collagen type XI 
alpha 1 chain)

PTGS2 
(prostaglandin-
endoperoxide 
synthase 2)

APOB LPL
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Table 1. Selected gene list of all four Asian and European datasets (continued)

Asian European

Malaysia (GSE15852) New Delhi 
(GSE89116)

Riyadh 
(GSE29044)

Singapore 
(GSE61304)

Dublin 
(GSE42568)

Barcelona 
(GSE29431)

Berlin 
(GSE21422)

ANGTPL4 ADIPOQ 
(adiponectin, 
C1Q and 
collagen 
domain 
containing)

SNCA 
(synuclein 
alpha)

FN1 (fibronectin 
1)

TLR4 (toll-like 
receptor 4)

VWF APOB

RBP4 (retinol binding 
protein 4)

FABP4 (fatty 
acid-binding 
protein 4)

PPBP (pro-
platelet basic 
protein)

FOXM1 (forkhead 
box M1)

CD36 PPARA 
(peroxisome 
proliferator 
activated 
receptor 
alpha)

FABP4

CAV1 CAV1 KLF1 [Kruppel-
like factor 1 
(erythroid)]

CCNA2 (cyclin 
A2)

- FOXO1 
(forkhead box 
protein O1)

ADIPOQ

TF (transferrin) LIPE (hormone-
sensitive lipase)

SLC25A37 
(solute carrier 
family 25 
member 37)

DLGAP5 (DLG 
associated 
protein 5)

- FABP4 FOXO1

ADH1B (alcohol 
dehydrogenase 1B)

KIT (KIT proto-
oncogene, 
receptor 
tyrosine kinase)

OXTR (oxytocin 
receptor)

STAT1 (signal 
transducer and 
activator of 
transcription 1)

- CAV1 CAV1

- PCK ADRB2 
(adrenoceptor 
beta 2)

MMP9 (matrix 
metallopeptidase 
9)

- FOS (Fos 
proto-
oncogene, 
AP-1 
transcription 
factor 
subunit)

CD36

- PNPLA2 
(patatin-like 
phospholipase 
domain 
containing 2)

- TPX2 (TPX2 
microtubule 
nucleation factor)

- - -

- - - ANLN (anillin 
actin binding 
protein)

- - -

- - - BIRC5 
(baculoviral IAP 
repeat containing 
5)

- - -

-: no data

Cluster of differentiation 36 (CD36), leptin (LEP) were found to be common genes among GSE29044, 
GSE89116, and GSE15852 datasets and Singapore consisted of cyclin-dependent kinase 1 (CDK1), aurora 
kinase A (AURKA), DNA topoisomerase II alpha (TOP2A), and baculoviral IAP repeat containing 5 (BIRC5) 
(Asian). Caveolin-1 (CAV1), insulin-like growth factor 1 (IGF1), CD36, apolipoprotein B (APOB), peroxisome 
proliferator-activated receptor gamma (PPARG), LEP were found to be common genes among GSE42568, 
GSE21422 and GSE29431 datasets (European).

Venn diagram analysis

Venn diagram of GSE29044, GSE89116, GSE15852, and GSE61304 datasets (Asian population) and Venn 
diagram of GSE42568, GSE21422, and GSE29431 datasets (European population) is shown in Figure 3.

Table 2 contains tabulated data of Venn diagram of Asian and European Population. From Venn 
diagram Asian results we observe that there are no genes common between all four Asian datasets but 
CD36 and LEP were found as HUB genes between GSE29044, GSE89116, and GSE15852 datasets, and CAV1 
and perilipin 1 (PLIN1) were found as secondary HUB genes common to GSE89116 and GSE15852. The 
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Figure 3. Venn diagram result of the HUB genes identified from each individual Asian and European datasets. HUB: 
highly upregulated biomarker

Table 2. Tabulated data of Venn diagram of Asian and European Population

Asian European

Name Genes Names Total Elements

Malaysia, 
New Delhi, 
Riyadh

CD36 (cluster of differentiation 36), LEP (leptin) Barcelona, 
Berlin, and 
Dublin

6 CAV1 (caveolin-1), IGF1 
(insulin-like growth factor 
1), CD36, APOB 
(apolipoprotein B), 
PPARG (peroxisome 
proliferator-activated 
receptor gamma), LEP

Malaysia, 
New Delhi

CAV1, PLIN1 (perilipin 1) Barcelona, 
Dublin

1 EGFR (epidermal growth 
factor receptor)

New Delhi KIT (KIT proto-oncogene, receptor tyrosine kinase), FABP4 (fatty 
acid-binding protein 4), PPARG, PNPLA2 (patatin-like 
phospholipase domain containing 2), LIPE (hormone-sensitive 
lipase), PCK (phosphoenolpyruvate carboxykinase), IGF1, FGF2 
(fibroblast growth factor 2), APOB, IL6 (interleukin 6), ADIPOQ 
(adiponectin, C1Q and collagen domain containing)

Barcelona, 
Berlin

4 FABP4, FGF2, VWF (von 
Willebrand factor), 
FOXO1 (forkhead box 
protein O1)

Riyadh ALAS2 (5’-aminolevulinate synthase 2), HBD (hemoglobin subunit 
delta), SLC25A37 (solute carrier family 25 member 37), HBM 
(hemoglobin subunit mu), FCG3B (Fc gamma receptor IIIb), KLF1 
[Kruppel-like factor 1 (erythroid)], SNCA (synuclein alpha), PPBP 
(pro-platelet basic protein), OXTR (oxytocin receptor), ADRB2 
(adrenoceptor beta 2)

Dublin 3 CCL2 [chemokine (C-C 
motif) ligand 2], TLR4 
(toll-like receptor 4), 
PTGS2 (prostaglandin-
endoperoxide synthase 
2)

Malaysia TF (transferrin), PCK1, RBP4 (retinol binding protein 4), ACACB 
(acetyl-CoA carboxylase beta), ADH1B (alcohol dehydrogenase 
1B), LPL (lipoprotein lipase), CFD (complement factor D), 
ANGPTL4 (angiopoietin like 4), GPD1 (glycerol-3-phosphate 
dehydrogenase 1)

Barcelona 3 PPARA (peroxisome 
proliferator activated 
receptor alpha), FOS 
(Fos proto-oncogene, 
AP-1 transcription factor 
subunit), CDH5 
(cadherin-5)

Singapore RRM2 (ribonucleotide reductase regulatory subunit M2), CDK1 
(cyclin-dependent kinase 1), AURKA (aurora kinase A), EXO1 
(exonuclease 1), TOP2A (DNA topoisomerase II alpha), COMP 
(cartilage oligomeric matrix protein), COL11A1 (collagen type XI 
alpha 1 chain), FN1 (fibronectin 1), FOXM1 (forkhead box M1), 
CCNA2 (cyclin A2), DLGAP5 (DLG associated protein 5), STAT1 
(signal transducer and activator of transcription 1), MMP9 (matrix 
metallopeptidase 9), TPX2 (TPX2 microtubule nucleation factor), 
ANLN (anillin actin binding protein), BIRC5 (baculoviral IAP 
repeat containing 5)

Berlin 4 LPL, CD34, CXCL12 (C-
X-C motif chemokine 
ligand 12), ADIPOQ

Singapore data set consisting specifically of breast adenocarcinoma did not have any common HUB gene, 
with the other selected datasets as the other datasets were not inclusive only of breast adenocarcinoma. 
From Venn diagram European results we observe that CAV1, IGF1, CD36, APOB, PPARG, and LEP are 
common HUB genes found in European population.
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CD36 and LEP were found to be common HUB genes in both populations, while CAV1 and PLIN1 were 
prevalent in Asian datasets, and CAV1, IGF1, APOB, and PPARG were identified in European datasets 
(Table 1).

Functional enrichment analysis
Functional analysis by Enrichr-KG of Asian population

HUB genes common to GSE29044, GSE89116, and GSE15852 were found to be CD36 and LEP from the Venn 
diagram results. The CD36, LEP, CAV1, and PLIN1 genes were inputted in Enrichr-KG to obtain the following 
results shown in Figure 4. Table 3 represents gene table of Enrichr-KG pathways of Asian datasets.

Figure 4. Enrichr-KG results of CD36, LEP, CAV1, and PLIN1. AMPK: AMP-activated protein kinase; CAV1: caveolin-1; 
CD36: cluster of differentiation 36; LEP: leptin; PLIN1: perilipin 1; PPAR: peroxisome proliferator-activated receptor

Table 3. Enrichr-KG pathways and associated gene table (Asian)

Pathway Associated genes Role in breast cancer (BC)

Cholesterol metabolism CD36 (cluster of differentiation 
36), LEP (leptin)

Influences BC progression, 
aggressiveness, and drug resistance

Impaired adaptive thermogenesis CAV1 (caveolin-1), LEP, CD36, 
PLIN1 (perilipin 1)

Promote cancer cell survival and growth

Adipocytokine signaling pathway LEP, CD36 Influence BC cell survival, growth, 
invasion, and metastasis

Positive regulation of mitogen-activated 
protein kinase (MAPK) cascade

LEP, CD36 Key in cell proliferation and death

AMP-activated protein kinase (AMPK) 
signaling pathway

CD36, LEP Functions as a tumor suppressor

Increased oxygen consumption CAV1, LEP, PLIN1 Increase tumor proliferation
Abnormal glucose homeostasis CAV1, LEP, PLIN1, CD36 Increases the proliferation of BC cells

GeneMANIA results of CD36, LEP, CAV1, and PLIN1 are shown in Figure 5. LEP receptor (LEPR), 
hydroxysteroid 11-beta dehydrogenase 1 (HSD11B1), fatty acid-binding protein 4 (FABP4), PLIN1, PLIN2, 
PLIN4, PLIN5, abhydrolase domain containing 5 (also known as CGI-58) (ABHD5), scavenger receptor class 
B member 2 (SCARB2), histone deacetylase 6 (HDAC6), CAV2, low-density lipoprotein receptor-related 
protein 6 (LRP6), nitric oxide synthase 3 (NOS3), NOS trafficking (NOSTRIN), and potassium voltage-gated 
channel subfamily H member 2 (KCNH2) are associated genes that play roles in BC as biomarkers, 
inhibitors and promoters in Asian datasets based on GeneMANIA results.
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Figure 5. GeneMANIA results of CD36, LEP, CAV1, and PLIN1. ABHD5: abhydrolase domain containing 5; CAV1: caveolin-1; 
CD36: cluster of differentiation 36; COL1A1: collagen type I alpha 1 chain; FABP4: fatty acid-binding protein 4; HDAC6: histone 
deacetylase 6; HSD11B1: hydroxysteroid 11-beta dehydrogenase 1; KCNH2: potassium voltage-gated channel subfamily H 
member 2; LEP: leptin; LEPR: leptin receptor; LRP6: low-density lipoprotein receptor-related protein 6; NOS3: nitric oxide 
synthase 3; NOSTRIN: nitric oxide synthase trafficking; PLIN2: perilipin 2; RAC1: Rac family small GTPase 1; SCARB2: 
scavenger receptor class B member 2

Functional analysis by Enrichr-KG of European population

HUB genes common to GSE42568, GSE21422, and GSE29431 were found to be CAV1, IGF1, CD36, APOB, 
PPARG, and LEP from the Venn diagram results. The six genes were inputted in Enrichr-KG to obtain the 
following results shown in Figure 6. Table 4 represents gene table of Enrichr-KG pathways of European 
datasets.

GeneMANIA results of CAV1, IGF1, CD36, APOB, PPARG, and LEP are shown in Figure 7. HSD11B1, CAV2, 
FABP4, IGF binding protein 2 (IGFBP2), APOB, aquaporin 7 (AQP7), PLIN4, APOA1, PLIN1, cell death inducing 
DFFA like effector a (CIDEA), glycerol-3-phosphate dehydrogenase 1 (GPD1), hormone-sensitive lipase 
(LIPE), adiponectin, C1Q and collagen domain containing (ADIPOQ), early B-cell factor 1 (EBF1), CIDEC, 
EBF3, palmdelphin (PALMD), semaphorin 3G (SEMA3G), IGFBP6, oxidized low-density lipoprotein receptor 
1 (OLR1), solute carrier family 19 member 3 (SLC19A3) are associated genes that play roles in BC based on 
GeneMANIA results for European datasets.

Comparison of gene expression across all seven datasets

A collective HUB gene analysis across all datasets reinforced the significance of CD36, LEP, and PPARG as 
key molecular regulators in BC progression.

Discussion
Comparing DEGs between European and Asian BC datasets provides crucial insights into population-
specific molecular mechanisms and pathways. These comparisons highlight genetic diversity and reveal 
unique tumor biology shaped by distinct genetic backgrounds and environmental influences. Universal 
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Figure 6. Enrichr-KG results of CAV1, IGF1, CD36, APOB, PPARG, and LEP. AMPK: AMP-activated protein kinase; APOB: 
apolipoprotein B; CAV1: caveolin-1; CD36: cluster of differentiation 36; IGF1: insulin-like growth factor 1; LEP: leptin; PPARG: 
peroxisome proliferator-activated receptor gamma

Table 4. Enrichr-KG pathways and associated gene table (European)

Pathway Associated genes Role in breast cancer (BC)

Cholesterol metabolism CD36 (cluster of differentiation 36), APOB 
(apolipoprotein B)

Influences BC progression, 
aggressiveness, and drug resistance

Decreased circulating adiponectin 
level

CAV1 (caveolin-1), CD36, PPARG (peroxisome 
proliferator-activated receptor gamma)

Contribute to breast tumor 
development and progression

Adipocytokine signaling pathway LEP, CD36 Influence BC cell survival, growth, 
invasion, and metastasis

AMP-activated protein kinase 
(AMPK) signaling pathway

CD36, LEP, PPARG, IGF1 (insulin-like growth 
factor 1)

Functions as a tumor suppressor

Increased circulating triglyceride 
level

CAV1, LEP, PPARG, APOB, CD36 Influence cancer cell growth and 
survival

Abnormal glucose homeostasis CAV1, LEP, IGF1, CD36, PPARG Increases the proliferation of BC cells

biomarkers such as CD36 and LEP emerge as common elements across populations, while region-specific 
genes like CAV1 and PLIN1 in Asian cohorts or IGF1 and APOB in European cohorts underline molecular 
differences that can inform tailored diagnostic and therapeutic strategies. In volcano plot and mean 
difference plot: red points represent genes that are significantly upregulated in BC compared to healthy 
tissue. Blue points represent genes that are significantly downregulated in BC compared to healthy tissue. 
Gray points represent genes that are not significantly different in expression between the two conditions. In 
Asian datasets: GSE29044: a larger number of blue points in comparison to red points indicates that the 
number of downregulated genes is higher than that of upregulated genes. GSE89116: a larger number of 
red points in comparison to blue points indicates that the number of upregulated genes is higher than that 
of downregulated genes. GSE15852: An almost equal number of blue and red points are observed indicating 
that the number of upregulated and downregulated genes are around the same. GSE61304: the number of 
grey points is higher than that of both blue and red points indicating that these genes are not different in 
expression to that of healthy tissues and downregulated and upregulated genes are around the same 
number. In European datasets: GSE21422, GSE29431, and GSE42568 a larger number of red points were 
observed in comparison to blue points indicating that the number of upregulated genes is higher than that 
of downregulated genes. This comparative approach enhances our understanding of BC heterogeneity and 
supports the advancement of personalized medicine.
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Figure 7. GeneMANIA results of CAV1, IGF1, CD36, APOB, PPARG, and LEP. ADIPOQ: adiponectin, C1Q and collagen 
domain containing; APOA1: apolipoprotein A1; AQP7: aquaporin 7; CAV2: caveolin-2; CD36: cluster of differentiation 36; 
CIDEA: cell death inducing DFFA like effector a; EBF1: early B-cell factor 1; FABP4: fatty acid-binding protein 4; GPD: glycerol-
3-phosphate dehydrogenase; HSD11B1: hydroxysteroid 11-beta dehydrogenase 1; IGF1: insulin-like growth factor 1; IGFBP2: 
insulin-like growth factor binding protein 2; LEP: leptin; LIPE: hormone-sensitive lipase; OLR1: oxidized low-density lipoprotein 
receptor 1; PALMD: palmdelphin; PLIN4: perilipin 4; PPARG: peroxisome proliferator-activated receptor gamma; SEMA3G: 
semaphorin 3G; SLC19A3: solute carrier family 19 member 3

Lifestyle and environmental factors, such as dietary habits and adiposity patterns, significantly 
influence key pathways like cholesterol metabolism and adipocytokine signaling [15]. Aberrant cholesterol 
metabolism can trigger carcinogenic pathways, such as the Hedgehog signaling system, which aids in tumor 
growth and the survival of cancer stem cells [16]. The development of BC is significantly influenced by 
adipocytokine signaling, especially when obesity is present. While lower levels of protective adipokines like 
adiponectin may raise the risk of developing cancer, higher levels of specific adipocytokines, such as LEP, 
can encourage tumor growth, invasion, and metastasis [17]. Dysregulated fatty acid metabolism sustains BC 
cell proliferation and survival by providing essential bioenergetic and biosynthetic resources. Enhanced 
lipogenesis, fatty acid uptake, and altered β-oxidation support membrane synthesis, energy production, and 
redox balance. Additionally, lipid signaling influences oncogenic pathways, promoting cell cycle 
progression, apoptosis resistance, and metastasis [18].

The development of BC is significantly influenced by adipocytokine signaling, especially when obesity 
is present. While lower levels of protective adipokines like adiponectin may raise the risk of developing 
cancer, higher levels of specific adipocytokines, such as LEP, can encourage tumor growth, invasion, and 
metastasis. Asian populations exhibit higher central adiposity despite lower BMI, while European cohorts 
show different lipid profiles influenced by dietary fat consumption [19]. These differences impact DEGs and 
associated pathways, emphasizing the need for region-specific prevention and treatment strategies. By 
bridging knowledge gaps in global BC research, this study ensures inclusivity for underrepresented 
populations and contributes to identifying robust biomarkers for precision diagnostics and targeted 
therapies.

Gene ontology
Gene ontology for Asian populations

The datasets GSE29044 (Riyadh), GSE15852 (Malaysia), GSE89116 (New Delhi), and GSE61304 (Singapore) 
consist of breast carcinoma and healthy tissue samples. HUB genes identified include CAV1, CD36, LEP, and 
PLIN1, with additional key proteins such as LEPR, PTPN1, SOC3, HSD11B1, CEBPA, PTK2, FABP4, integrin 
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alpha-6 (ITGA6), clusterin (CLU), cartilage oligomeric matrix protein (COMP), ghrelin and obestatin 
prepropeptide (GHRL), PPARG, and SCARB2. These genes play significant roles as potential biomarkers and 
therapeutic targets.

ABHD5 suppresses cancer cell proliferation via the ABHD5/ATGL pathway, while KCNH2 promotes 
epithelial-mesenchymal transition (EMT), facilitating metastasis [20]. Elevated SCARB2 levels are linked to 
advanced cancer stages and poor prognosis, and overexpression of HDAC6 enhances metastasis through 
heat shock factor 1 (HSF1) activation [21]. CAV1 regulates critical signaling pathways, including estrogen 
receptor (ER), epidermal growth factor receptor (EGFR), and transforming growth factor beta (TGF-β), 
while LRP6 is a biomarker for poor prognosis via Wnt signaling pathway/β-catenin activation [22]. LEP and 
its receptor LEPR drive proliferation and angiogenesis through janus kinase 2/signal transducer and 
activator of transcription 3 (JAK2/STAT3) and Extracellular signal-Regulated Kinase (ERK) pathways [23]. 
Suppressor of cytokine signaling 2 (SOCS2) and SOCS3 regulate STAT pathways, influencing proliferation 
and angiogenesis [24]. FABP4 and ITGA6 enhance invasive properties and establish a link between obesity 
and cancer risk [25]. COMP, identified in the Singapore cohort, is associated with cancer stem cell 
properties [26]. These findings underscore the roles of lipid metabolism, signaling pathways, and the tumor 
microenvironment in BC progression, with CD36, LEP, and PPARG highlighted as key therapeutic targets.

Gene ontology for European populations

The datasets GSE42568 (Dublin), GSE21422 (Berlin), and GSE29431 (Barcelona) include breast carcinoma 
and healthy tissue samples. HUB genes identified include CAV1, IGF1, CD36, APOB, PPARG, and LEP. 
Additional genes such as IGFBP2, APOB, HSD11B1, AQP7, APOA1, GPD1, ADIPOQ, PPARG, EBF3, PALMD, 
SEMA3G, IGFBP6, OLR1, and SLC19A3 serve as biomarkers, inhibitors, or promoters in BC. IGFBP2 promotes 
tumor proliferation, migration, and angiogenesis, while APOB mutations are linked to aggressive BC, 
especially in postmenopausal women [27]. HSD11B1 induces EMT, enhancing metastasis, and AQP7 
correlates with better survival [28]. APOA1 suppresses apoptosis and supports tumor growth [29], and 
GPD1 inhibits proliferation via the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway 
[30]. ADIPOQ polymorphisms influence serum adiponectin levels and BC risk [31]. PPARG regulates 
angiogenesis and apoptosis in ER + BC and is a potential target for natural treatments like quercetin [32]. 
EBF3 induces cell cycle arrest, and PALMD inhibits tumor growth by blocking the PI3K/AKT pathway [33]. 
SEMA3G promotes angiogenesis and metastasis, while IGFBP6 downregulation increases metastasis risk 
[34]. OLR1 upregulation indicates poor prognosis due to immune evasion [35]. LIPE promotes lipolysis, 
providing metabolic substrates for tumor growth.

Common gene ontology across populations

CD36 and LEP were common HUB genes identified in both European and Asian datasets, with FABP4, 
HSD11B1, and PLIN family genes emerging as associated genes. CD36 enhances fatty acid uptake, lipid 
metabolism, cancer proliferation, and EMT, marking it as a potential cancer stem cell marker [36]. LEP 
activates pathways like MAPK, PI3K/AKT, and JAK2/STAT, driving proliferation, migration, and 
angiogenesis across BC subtypes [5]. PLIN1 regulates lipid droplets in aggressive tumors, while FABP4 links 
obesity to BC by promoting lipolysis and inflammation [37]. HSD11B1 induces EMT, facilitating metastasis. 
Upregulated genes such as LIPE, AQP7, CD36, and PLIN1 in epithelial and stromal compartments highlight 
enhanced fatty acid metabolism and transport, supporting tumor growth [28].

Pathways and gene function in BC
Asian populations

CD36-mediated signaling pathways involving Src-family kinases, MAPKs, and the ERK-1/2 pathway 
regulate cell proliferation and survival in BC [38]. Elevated MAPK activity is observed in approximately half 
of breast tumors [39]. LEP, CD36, and CAV1 contribute to thermogenesis, fostering a pro-tumor immune 
microenvironment by reducing cytotoxic T-cell activity and increasing immunosuppressive cells. Enhanced 
oxygen consumption by LEP, CAV1, and PLIN1 creates hypoxic conditions that promote tumor progression 
and therapy resistance [40].
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European populations

CD36 and APOB drive oncogenic activity through scavenger receptors like Scavenger Receptor Class B Type 
1 (SR-BI), promoting tumor proliferation and migration via MAPK and PI3K pathways [36]. IGF1, CD36, 
CAV1, and APOB regulate hemostatic pathways, contributing to tumor progression by enhancing 
coagulation and angiogenesis. Toll-like receptor (TLR) signaling, influenced by CD36 and APOB, promotes 
chronic inflammation and chemoresistance [41]. LEP, PPARG, and CD36 modulate white adipocyte 
differentiation, creating cancer-associated adipocytes (CAAs) that support tumor aggressiveness.

Common pathways across populations

CD36 and LEP regulate cholesterol metabolism, influencing fatty acid uptake, lipid storage, and 
inflammation. LEP drives tumor proliferation and migration via MAPK and JAK2/STAT pathways, while 
CD36 interacts with AMPK to suppress tumorigenic metabolism and induce cell-cycle arrest. AMPK plays a 
pivotal role in regulating metabolic pathways essential for tumorigenesis and cancer progression. It 
influences key cellular processes that govern cancer cell growth, survival, and proliferation while also 
modulating pathways involved in glucose, lipid, and protein metabolism [42]. Enhanced lipid metabolism, 
driven by APOB, FABP4, and PPARG, supports tumor growth and immune evasion [43]. Elevated triglyceride 
levels and dysregulated lipid metabolism are crucial for tumor proliferation, migration, and resistance to 
therapy [44].

AMPK and PPAR pathways, activated by adiponectin, provide metabolic regulation, while salt-inducible 
kinase 2 (SIK2) suppresses tumor progression by inhibiting the PI3K/AKT and Ras/ERK pathways [45]. 
Collectively, these pathways underscore the metabolic reprogramming central to BC progression.

Future directions

This study highlights CD36 and LEP as promising therapeutic targets, warranting further wet lab validation 
and clinical trials. Additionally, integrating multi-omics approaches and AI-driven predictive models could 
refine precision oncology frameworks.

Conclusion

BC exhibits significant molecular heterogeneity influenced by genetic, dietary, environmental, and 
epigenetic factors. This study identified CD36 and LEP as universal HUB genes consistently upregulated 
across both Asian and European BC datasets, indicating their potential as global diagnostic and prognostic 
biomarkers. Additionally, CAV1, IGF1, APOB, and PPARG were identified as key regulatory genes in 
European populations, while PLIN1 and CAV1 were prominent in Asian populations, suggesting region-
specific molecular variations that may influence tumor progression and therapeutic response.

Functional enrichment analysis highlighted the involvement of these genes in critical pathways, 
including cholesterol metabolism, adipocytokine signaling, AMPK regulation, and lipid metabolism, 
emphasizing their role in BC pathophysiology. The observed differences in gene expression patterns 
underscore the necessity for personalized medicine approaches, incorporating molecular profiling to 
optimize early detection, risk stratification, and targeted treatment strategies.

Clinically, CD36 and LEP may serve as potential biomarkers for non-invasive liquid biopsy screening, 
enabling early detection and tumor stratification. Their role in metabolic regulation also suggests potential 
therapeutic applications, with CD36 inhibitors and LEP antagonists warranting further exploration in 
obesity-associated BC. Furthermore, PPARG agonists and lipid metabolism modulators may serve as 
promising candidates for targeted interventions, particularly in hormone receptor-positive BC subtypes. 
Given the ethnic and regional variations in HUB gene expression, incorporating population-specific 
molecular profiling into treatment regimens could enhance therapeutic efficacy and minimize adverse 
effects.

Future research should focus on large-scale cohort validation and experimental studies to confirm the 
clinical utility of these biomarkers and evaluate their therapeutic potential. Additionally, the integration of 
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multi-omics approaches, AI-driven predictive models, and metabolic interventions could refine precision 
oncology strategies, ensuring more effective, patient-centered treatment paradigms. CD36 and LEP emerge 
as promising targets for advancing BC diagnostics, prognostics, and therapeutics, paving the way for more 
precise and individualized management strategies in breast oncology.
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