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Abstract
Aim: Substance use disorders (SUD) result in substantial morbidity and mortality worldwide. Opioids, and to 
a lesser extent cocaine, contribute to a large percentage of this health burden. Despite their high heritability, 
few genetic risk loci have been identified for either opioid or cocaine dependence (OD or CD, respectively). 
A genome-wide association study of OD and CD related phenotypes reflecting the time between first self-
reported use of these substances and a first DSM-IV dependence diagnosis was conducted.
Methods: Cox proportional hazards regression in a discovery sample of 6,188 African-Americans (AAs) 
and 6,835 European-Americans (EAs) participants in a genetic study of multiple substance dependence 
phenotypes were used to test for association between genetic variants and these outcomes. The top findings 
were tested for replication in two independent cohorts.
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Results: In the discovery sample, three independent regions containing variants associated with time to 
dependence at P < 5 × 10-8 were identified, one (rs61835088 = 1.03 × 10-8) for cocaine in the combined EA-AA 
meta-analysis in the gene FAM78B on chromosome 1, and two for opioids in the AA portion of the sample in 
intergenic regions of chromosomes 4 (rs4860439, P = 1.37 × 10-8) and 9 (rs7032521, P = 3.30 × 10-8). After 
meta-analysis with data from the replication cohorts, the signal at rs61835088 improved (HR = 0.87, P = 
3.71 × 10-9 and an intergenic SNP on chromosome 21 (rs2825295, HR = 1.14, P = 2.57 × 10-8) that missed the 
significance threshold in the AA discovery sample became genome-wide significant (GWS) for CD.
Conclusions: Although the two GWS variants are not in genes with obvious links to SUD biology and have 
modest effect sizes, they are statistically robust and show evidence for association in independent samples. 
These results may point to novel pathways contributing to disease progression and highlight the utility of 
related phenotypes to better understand the genetics of SUDs.
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Introduction
The opioid epidemic continues to cause human and economic devastation in the United States and 
elsewhere [1]. U.S. deaths due to the misuse of opioids reached a record high of more than 42,000 in 
2016, which prompted the U.S. Department of Health and Human Services to declare opioid abuse to be 
a public health emergency in 2017. Several factors led to the epidemic, including the over-prescription of 
opioid analgesics, increased availability of heroin and illicit synthetic opioids [2], and possibly progressively 
worsening labor market opportunities, especially for those with low levels of education [3]. Despite early 
interventions to curb over-prescription, the epidemic continued to worsen [4]. Cocaine dependence (CD) 
has received less attention recently but its U.S. prevalence (likely significantly underreported [5]) remains at 
about 1%, resulting in a significant public health burden [6]. Cocaine users experience mortality rates four 
to eight times higher than the general population [7] and have an increased risk of suicide [8]. In contrast to 
opioid dependence (OD), pharmacological treatments for CD do not exist [9].

Moderate to high heritability estimates for both OD (43-50%) [10] and CD (65-78%) [11, 12] strongly 
suggest a genetic component to risk. Several OD risk genes have been identified through modestly-sized 
genome-wide association studies (GWAS) [13-16], but they have not been replicated and explain only a tiny 
fraction of the total trait heritability. Similarly, CD risk genes have been identified and there is evidence of 
genetic overlap between CD and other psychiatric disorders [17, 18], but collectively these results explain 
little trait heritability. Two relatively large OD GWAS papers have been published recently [Polimanti et 
al. [16] (4,503 OD cases) and Zhou et al. [19] (28,317 OD cases)]. These studies identified a single genome-
wide significant (GWS) association for OD: a coding variant in the μ-opioid receptor gene OPRM1 (opioid 
receptor mu 1 gene). The sample sizes available for these studies still lag far behind those available for other 
complex diseases with a similar public health impact, and no large scale GWAS for CD has been performed. 
This problem is exacerbated by the fact that controls exposed to illicit drugs (a prerequisite for developing 
OD or CD) represent a small subset of the total control population. They may also be limited by the lack of 
differentiation between dependence upon prescription opioids and heroin, which may have a different set of 
risk factors.

In light of the deficits in our understanding of the genetic factors contributing to OD and CD risk, we have 
sought to derive phenotypes that are under more direct genetic control that could facilitate understanding 
the disorders and identification of potential drug targets and risk pathways. Our group recently identified 
variants near OPRM1 associated with usual methadone dosage in a sample of individuals with OD [20]. Here, 
we report findings from a GWAS of two related phenotypes: the time between first reported use and first 
DSM-IV diagnosis of OD and CD. We analyzed each substance independently. Both cocaine and opioids are 
highly addictive [21]. Approximately 50% of individuals who ever use heroin develop OD [22], while about 
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four percent of people who try cocaine become addicted within two years, with another 16% in a prodromal 
stage of addiction [23]. A few studies (one conducted in the primary cohort analyzed here) have examined 
risk factors associated with rapid progression to dependence. Conduct disorder and childhood physical abuse 
predicted rapid more development of OD and CD, while and alcohol and nicotine dependence diagnoses 
were associated with slower progression, and African Americans (AAs) progressed to OD more rapidly than 
European Americans (EAs) [24].

There is also an interplay between use of medically indicated or recreationally used prescription opioids 
or heroin in determining who develops OD. Prescription opioids used for pain relief are generally safe when 
taken for a short time and as prescribed by a doctor. In a U.S. veteran population, individuals who used 
prescription opioids recreationally had 19 times the odds of initiating heroin use, fewer than four percent 
of people who abuse prescription opioids initiate using heroin within five years [25]. Despite our inability 
to distinguish between disease course with regard to specific opioids and their pattern of initiation, these 
related phenotypes have two properties that make them attractive for variant discovery: namely (1) they do 
not include individuals who were never exposed to opioids or cocaine and (2) they may be better indicators 
of an individual’s genetic risk for OD/CD than case-control status because they distinguish between cases 
who develop the disorder slowly (i.e. are more genetically resistant) and those who develop it rapidly (i.e. are 
highly genetically susceptible), assuming these differences are partially under genetic control.

Materials and methods
Participants and diagnostic procedures
Subjects for the study were recruited from three sources. The Yale-Penn discovery sample includes 6,188 AAs 
and 6,835 EAs participants who were ascertained for genetic studies of dependence on opioids, cocaine or 
alcohol between 2000 and 2017 by advertisement and through treatment settings at Yale University School of 
Medicine, University of Pennsylvania, University of Connecticut Health Center, the Medical University of South 
Carolina, University of Pennsylvania, and McLean Hospital in Belmont, Massachusetts [26, 27]. Psychiatric 
interviews were conducted using the Semi-Structured Assessment for Drug Dependence and Alcoholism 
(SSADDA) [28, 29].

A replication sample of EAs, informative for opioids but not cocaine, was derived from the Comorbidity 
and Trauma Study (CATS) [30, 31]. Briefly, opioid-dependent cases age 18 or older were recruited from opioid 
agonist treatment (OAT) clinics in metropolitan Sydney, Australia. Persons who had recent suicidal intent or 
psychosis were excluded. Controls were recruited from neighborhoods geographically proximal to the cases 
and excluded those who used opioids recreationally more than five times. Subjects were interviewed using 
the Semi-Structured Assessment for the Genetics of Alcoholism-Australia (SSAGA-OZ) [32] to derive DSM-IV 
substance use disorders (SUDs) diagnoses.

A second independent sample used for replication came from the Collaborative Study on the Genetics 
of Alcoholism (COGA), a large family-based study that recruited alcohol-dependent AA and EA probands 
from treatment facilities across seven sites in the United States [33, 34]. Probands and their families were 
invited to participate. Additional individuals and their families were recruited from the same communities. 
All participants were administered a version of the SSAGA [32, 35] which also queried about illicit drugs 
including opioids and cocaine.

Institutional review boards at all sites for all three studies approved the protocol and consent forms, and 
all participants provided written, informed consent according to the Helsinki Declaration Code of Ethics.

Phenotype definition
Analyses for cocaine and opioids were conducted independently; separate GWAS were performed for each 
outcome. Although individuals exposed to both opioids and cocaine contributed to both analyses, cocaine 
exposure/dependence did not inform analyses of opioids and vice versa. Time-to-dependence (TD) was 
defined as the interval between self-reported age at first opioid/cocaine use and the age at first self-reported 
endorsement of three or more DSM-IV OD/CD criteria within the same month. Individuals who used opioids or 
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cocaine at least once but never became dependent were censored at their age at interview. No differentiation 
was made between exposure to or dependence on prescription vs. illicit opioids, but the majority (65%) of 
users in the Yale-Penn sample reported heroin as their most heavily used opioid.

Genotyping, imputation and quality control (QC)
DNA specimens in the Yale-Penn sample were genotyped on three microarrays: Yale-Penn 1 on the Illumina 
HumanOmni1-Quad v1.0 microarray (OMNI), Yale-Penn 2 on the Illumina Infinium Human Core Exome 
microarray (HCE), and Yale-Penn 3 on the Illumina Multi-ethnic Global Array (MEGA). QC of genotype data 
was performed as previously described [13]. Briefly, individuals and single nucleotide polymorphisms 
(SNPs) with a call rate < 98% and variants with minor allele frequency (MAF) < 1% were excluded prior to 
imputation. Pairwise identity-by-decent (IBD) was calculated with PLINK to determine genetic relatedness 
among individuals in the sample and individuals with a pairwise IBD estimate > 25% were assigned to the 
same family. Self-reported males with X chromosome heterozygosity > 20% and self-reported females with 
X chromosome heterozygosity < 20% were excluded. SNP genotype imputation was performed using the 
March 2012 1,000 Genomes reference panel (1,000 Genomes Project, 2012; http://www.1000genomes.org/) 
and IMPUTE2 [36] separately in AAs and EAs implemented on the Michigan imputation server (https://
imputationserver.sph.umich.edu).

DNA specimens from the CATS sample were genotyped at the Center for Inherited Disease Research (CIDR) 
using the Illumina Human660W-Quad BeadChip. Genotype and sample QC was as described previously [9]. 
After initial QC, data were imputed to the 1,000 Genomes Phase 3 European ancestries reference panel using 
the Michigan Imputation Server. Details on the genotyping QC, and imputation of the COGA samples are 
described in detail elsewhere [37]. Briefly, samples were genotyped on multiple arrays in multiple labs. A 
subset of 47,000 common, independent, and high-quality SNPs that were genotyped across all arrays were 
used to assess duplicate samples, confirm the reported pedigree structure and compute ancestral principal 
components (PCs). After assignment of individuals in a family to a specific population, family-wise ancestry 
was designated according to the majority of individual family members. Genotypes were imputed to 1,000 
Genomes using the cosmopolitan reference panel (Phase 3, version 5, NCBI GRCh37) using SHAPEIT2 [38] 
and Minimac3 [39].

After applying QC filters and phenotypic criteria, the Yale-Penn discovery sample included in analyses 
contained 1,307 AA and 2,340 EA OD cases and 974 AA and 768 EA opioid-exposed controls and 3,554 AA 
and 2,712 EA CD cases and 478 AA and 915 cocaine-exposed controls. The CATS replication sample contained 
1,217 EA OD cases and 88 opioid-exposed controls. Demographic information and mean TD or censoring in 
the three cohorts are shown in Tables 1 (CD) and 2 (OD). The COGA replication sample included 144 AA and 
334 EA OD cases and 354 AA and 1,305 opioid-exposed controls, 572 AA and 759 EA CD cases and 416 AA 
and 1,620 EA cocaine-exposed controls.

Table 1. Demographic information on opioid-exposed individuals contributing to analysis of the trait time to opioid use disorder

Cohort AA EA
Age
µ (SD)

Sex
N (%) 
male

OD cases (N, 
mean years to 
dependence)

OD controls 
(N, mean years 
to censoring)

Age
µ (SD)

Sex
N (%) 
male

OD cases (N, 
mean years to 
dependence)

OD controls 
(N, mean years 
to censoring)

Yale-
Penn

42.2 (9.0) 1,500 (66) 1,307 (3.6) 974 (14.9) 36.7 (10.8) 1,977 (64) 2,340 (3.8) 768 (13.9)

COGA 56.6 (13.7) 325 (65) 144 (4.3) 354 (13.8) 49.7 (14.6) 1,047 (64) 334 (3.4) 1,305 (13.6)
CATS NA NA NA NA 36.5 (8.6) 778 (59.6) 1217 (3.8) 88 (10.5)

Table 2. Demographic information on cocaine exposed individuals contributing the time to cocaine use disorder analysis

Cohort AA EA
Age
µ (SD)

Sex
N (%) 
male

CD cases (N, 
mean years to 
dependence)

CD controls 
(N, mean years 
to censoring)

Age
µ (SD)

Sex
N (%) 
male

CD (N, mean 
years to 
dependence)

CD controls (N, 
mean years to 
censoring)

Yale-
Penn

42.5 (8.3) 2,419 (60) 3,554 (5.5) 478 (17.8) 38.0 (11.1) 2,237 (62) 2,712 (4.9) 915 (16.3)

COGA 56.9 (10.1) 568 (57) 572 (4.6) 416 (13.8) 52.1 (13.1) 1380 (58) 759 (3.9) 1,620 (13.3)
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Statistical analysis
OD and CD TD analyses were performed separately and without considering an individual’s exposure or 
dependence status for the other drug. Analyses were stratified by genotyping platform and genetically 
determined ancestry and combined with inverse variance weighted meta-analysis. Variants with P-values < 
1.0 × 10-5 were tested in the replication samples. Association tests were performed using Cox proportional 
hazards regression [40] implemented in the R package Survival (https://cran.r-project.org/web/views/
Survival.html). Cases had a lifetime DSM-IV OD or CD diagnosis and controls did not, although they could 
have endorsed two or fewer of the dependence criteria. All controls were exposed to cocaine or opioids (at 
least one reported use, including prescription) in their respective analyses. Imputed allele dosage was the 
predictor variable and models were adjusted for age (in COGA and CATS only, ten-year-age cohorts in COGA), 
sex, and the first five PCs (calculated within each ancestry group). The cluster option was used to account 
for the presence of related individuals in the samples by generating robust variance estimates. OD and CD 
TD analyses were performed separately and without considering an individual’s status on exposure to or 
dependence on the other drug. Analyses in the Yale-Penn and COGA samples were stratified by population 
and genotyping chip (in Yale-Penn) and all results were combined via inverse variance weighted meta-
analysis using METAL (https://genome.sph.umich.edu/wiki/METAL) [41]. Analyses were stratified by cohort 
and ancestry (where applicable) and combined with inverse variance weighted meta-analysis. Variants 
with P-values < 1.0 × 10-5 were tested in the replication samples. The proportional hazards assumption was 
checked by verifying that the Schoenfeld residuals for each term in the model were independent of time. Both 
age at interview and age at fist cocaine/opioid use were significantly associated with TD in Yale-Penn but 
both violated the proportional hazards assumption and were not included in the final analysis in Yale-Penn. 
The top results were very similar with and without each age term in the model, but including an age by time 
interaction term attenuated them substantially.

The Yale-Penn results for CD and OD in EAs, AAs, and the combined meta-analyses were uploaded to the 
Functional Mapping and Annotation (FUMA) of GWAS portal [42], which performs functional mapping, gene 
based tests, and gene set enrichment analyses using GWAS summary statistics. Regional Manhattan plot were 
generated using Locuszoom software [43].

Results
Across all cohorts, the mean TD was shorter for opioids than cocaine (Tables 1 and 2). In Yale-Penn, older 
age at interview was strongly associated with longer TD for both CD [hazard ratio (HR) = 0.97 per year, P = 
3.51 × 10-97] and OD (HR = 0.98 per year, P = 3.02 × 10-27). EA ancestry was associated with a longer TD for CD 
(HR = 0.79, P = 3.70 × 10-18) and a shorter TD for OD (HR = 1.43, P = 1.20 × 10-21). Female sex was associated 
with longer TD for CD (HR = 0.97, P = 0.046) and shorter TD for OD (HR = 1.12, P = 0.001). Shorter TD 
was significantly correlated with a higher number DSM-IV dependence criteria endorsed (i.e. more severe 
dependence), with Pearson correlation coefficients of 0.54 and 0.53 in AAs and EAs, respectively, for OD and 
0.44 and 0.48 in AAs and EAs, respectively, for CD. The distribution of DSM-4 CD and OD criteria counts in 
Yale-Penn are shown in Supplemental Figure 1.

Boxplots for the distributions of age at onset and the TD for each substance in Yale-Penn are shown in 
Supplemental Figure 2. There were 4,989 individuals exposed to both cocaine and opioids that contributed 
to both analyses. There were 2,908 individuals with a lifetime DSM-4 dependence diagnosis for both drugs.

Discovery GWAS results
In the discovery sample, we identified tone region containing variants associated with TD at a GWS level (P < 
5 × 10-8) in the gene family with sequence similarity 78-member B (FAM78B) on chromosome 1 (rs61835088, 
P = 2.96 × 10-8) for CD in the combined EA and AA sample. Each copy of minor (C) alleles at rs61835088 
was associated with 0.57 fewer years between first use and CD diagnosis among those who converted. The 
Manhattan plots for CD and OD in Yale-Penn AAs and EAs are shown in Supplemental Figure 3. There was no 
evidence for inflation of the test statistics for either substance in either EAs or AAs (Supplemental Figure 4).
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Gene and gene set analyses
No significant gene-based tests were observed after correcting for the number of valid gene-based test 
results, which varied by population and dependence outcome. The top ranked gene (P = 4.5 × 10-6) in gene 
based tests was calcium voltage-gated channel subunit alpha1 B (CACNA1B) in the EA CD analysis. One gene 
set (membrane depolarization) showed a significant enrichment, with six of 83 genes, including CACNA1B, 
showing nominally significant gene based test results after Bonferroni correction (P = 0.04) for CD in EAs.

Replication results
Three hundred and fifty one variants with suggestive P-values < 1.0 × 10-5 in the discovery sample (149 for 
CD, and 202 for OD) were tested in the replication samples. Several of these did not yield a valid result due to 
low MAF or imputation quality in their respective ancestry group or substance. Valid results were obtained 
for 142 CD SNPs and 200 OD SNPs in COGA and 170 OD SNPs in CATS. After correcting for the number of tests 
performed, none of the GWS hits in the discovery met criteria for replication. Several variants were at or near 
nominal significance with the same effect direction as Yale-Penn in COGA/CATS and improved the association 
signal after meta-analysis. The strongest signal in any of the replication samples was in the OD analysis with 
rs8063946 (P = 3.70 × 10-4 in COGA AAs) in the gene FTO alpha-ketoglutarate-dependent dioxygenase (FTO).

Discovery + replication results
After combining all results, the association of rs61835088 with CD TD strengthened (HR = 0.87, P = 3.71 × 10-9, 
Table 3, Figure 1). For the same outcome, the association with intergenic chromosome 21 SNP rs2825295 in 
AAs surpassed the GWS threshold in the combined Yale-Penn/COGA meta-analysis (P = 2.19 × 10-8, Table 3, 
Figure 1). Each minor (T) allele at rs2825295 was associated with 0.43 fewer years between first cocaine 
use and dependence among those who converted. The top variant in regions with P-values < 1.0 × 10-6 after 
combining all data are shown in Tables 3 (CD) and 4 (OD in AAs). For OD TD, all but one of the top associations 
was in the AA portion of the sample. There was one OD TD signal in the combined EA and AA sample, rs8063946 
(P = 1.87 × 10-7) in the gene FTO, which for clarity is not shown in Table 4. Near-GWS evidence of association 
was obtained in the combined samples with SNPs in three other genes previously associated with addiction 
phenotypes: rs114341823 in GRIN2B [38, 39], which encodes the glutamate ionotropic receptor NMDA type 
subunit 2B was associated with OD TD in AAs (P = 1.45 × 10-7); the variant in FTO [44-46] described above; 
and rs73721103, which is between alpha-aminoadipic semialdehyde synthase (AASS) and LOC102724527 
but is ~100 kilobases from PTPRZ1 [47, 48], which encodes the protein tyrosine phosphatase receptor type 
Z1 with CD TD in AAs (P = 2.81 × 10-7).

Table 3. Top associations for time to CD

Chr BP rsID A1 A2 Gene Group Yale-Penn COGA Yale-Penn + COGA
MAF AA 

P
EA P AA + 

EA P
AA 
P

EA 
P

HR P Direction

1 166038842 rs61835088 T C FAM78B All 0.14 5.19
E-08

2.55
E-02

2.96
E-08

0.89 0.01 0.87 3.71
E-09

--------

5 170894319 rs112894747 C G FGF18-
LOC105377721

AA 0.03 9.01
E-06

NA 9.01
E-06

0.01 NA 1.41 4.76
E-07

+-++

7 90978616 rs74426341 C G LOC105375392 All 0.04 1.46
E-06

5.70
E-07

1.46
E-06

0.08 0.62 1.37 2.52
E-07

?+-
+++++

7 90983464 rs73404786 A G LOC105375392 EA 0.04 2.75
E-01

5.20
E-08

4.19
E-07

0.08 0.74 1.38 2.37
E-07

++++

7 121807926 rs73721103 T G AASS-
LOC102724527

AA 0.05 6.57
E-01

NA 2.76
E-03

0.11 NA 1.30 4.00
E-07

++++

21 20404237 rs2825295 T G AL157359.3-
AP000431.1

AA 0.35 1.45
E-07

3.15
E-02

1.04
E-07

0.07 0.83 1.14 2.57
E-08

++++

The order of the symbols corresponds to Yale-Penn 1, Yale Penn 2, Yale-Penn 3, COGA. If AAs and EAs are combined, the AA 
symbol precedes the EA symbol. A1: effect allele; A2: non-effect allele; MAF: minor allele frequency in the subset of the Yale-
Penn cohort indicated in the Group column; P: P-value; Direction: effect direction of A1
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Functional annotation
None of the variants we identified result in amino acid changes and any function they might have is likely 
regulatory, or as a result of linkage to a functional variant. Several of the top CD TD SNPs showed evidence for 
regulatory potential in various databases. According to the Genotype Tissue Expression database (https://

Figure 1. Regional Manhattan plots for the FAM78B region on chromosome 1 (A) and the intergenic region on chromosome 21 
(B) for time to CD in AAs in the Yale-Penn cohort. SNPs are color coded according to the correlation coefficient (r2) in the 1,000 
Genomes African reference panel with the top-ranked SNP. Light blue line indicates the observed recombination rate (right-side 
y-axis)

A

B
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gtexportal.org/home/) rs61835088 is a significant eQTL for FAM78B in tibial nerve tissue. This variant 
was also an eQTL for that gene in prefrontal cortex and blood according to QTLbase (http://mulinlab.org/
qtlbase) [49]. Several variants, including rs61835088, rs73404786 were significant methylation QTLs (mQTL) 
in prefrontal cortex. Rs73721103 was a significant eQTL for the gene ring finger protein 133 (RNF133) in 
blood. Only one OD TD SNP showed evidence for regulatory potential: rs11728570 as a significant mQTL in 
blood. Neither SNP Function Prediction (https://snpinfo.niehs.nih.gov/) nor Braineac (http://braineacv2.
inf.um.es/) provided any additional information about potential functionality of the top results.

Discussion
Here we present the results from GWASs of CD and OD related phenotypes measuring the time interval 
between first use of cocaine or opioids and a DSM-IV dependence diagnosis on the respective drug. These 
analyses, made possible by the extensive phenotyping performed on three independent cohorts, identified 
two GWS associations, one specific to AAs and one in the full sample, between relatively common variants 
and enhanced susceptibility to CD that were not detected at GWS in GWAS that used the bivariate case-control 
status for dependence as outcomes. Both of these were strengthened after combining meta-analysis with the 
replication sample. To our knowledge, this is the first time these trait definitions have been studied using 
GWAS. Although none of the GWS associations in the discovery sample were replicated after correcting for 
the number of variants tested in the COGA and CATS cohorts, 13 (9%) of the CD TD SNPs and 11 (5.5%) of the 
OD TD SNPs were nominally significant in one of those samples with the same effect direction.

The function of FAM78B, associated with progression from cocaine use to dependence, is not well 
understood but it is highly expressed in the brain [50] and interacts with several other proteins with diverse 
functions [51]. According to the STRING protein-protein interaction database (as https://string-db.org) [52], 
the proteins with which it is predicted to interact include ones related to mitochondrial function (ATP5F1), 
neurofilament network integrity (SNCG), and NOTCH signaling (XXYLT1).

Other genes that were among the top hits, but not GWS, have functions with potential links to SUDs. 
The genes GRIN2B and FTO, associated with progression from opioid use to dependence; and PTPRZ1, 
associated with cocaine TD have all previously been linked to SUD traits. Different variants than the one 
identified in this study in GRIN2B have been associated with OD [43] and chronic ketamine use [42]. Its 
protein product directly binds calcium/calmodulin-dependent protein kinase 2-alpha (encoded by CAMK2A), 
which can lead to synaptic long-term potentiation by facilitated CAMK2 response to synaptic calcium [53]. 
We previously identified this pathway as an important modulator of OD risk [13] and this result strengthens 
the evidence that an individual’s propensity to establish and reinforce substance-specific neural circuits may 
be an important factor driving their genetic predisposition to SUDs, and that calcium homeostasis may at 
least partially drive that propensity. FTO has also been associated with addictive behaviors. Although initially 
identified as a regulator of eating and obesity traits [54, 55], though probably not through an effect of FTO 
itself but rather as a consequence of variants in the gene that affect expression of IRX3 and IRX5 [54, 56]. 

Table 4. Top associations for time to OD in AAs

Yale-Penn COGA Yale-Penn + COGA
Chr BP rsID A1 A2 GENE MAF P P HR P Direction
2 8653036 rs113142991 A C LINC00299-

LINC0184
0.07 1.81E-07 8.30E-01 1.57 6.48E-07 +++-

4 59826282 rs4860439 T C RP11-506N2.1 0.31 1.02E-07 6.50E-01 0.80 1.06E-07 ----
4 95747400 rs11728570 T C BMPR1B 0.37 1.08E-05 4.90E-02 0.82 1.07E-06 ----
9 118707243 rs115391335 T C LINC00474-

LOC105376236
0.03 5.55E-07 1.80E-01 1.72 1.11E-07 +++-

10 49574826 rs1881736 A T MAPK8 0.04 1.47E-05 7.60E-03 0.63 3.73E-07 --+-
12 14086651 rs114341823 T C GRIN2B 0.03 8.75E-07 9.20E-02 1.70 1.77E-07 ++++
12 53305274 rs114198947 A G KRT8 0.03 2.68E-06 8.80E-01 1.67 7.35E-07 ++++

The order of the symbols corresponds to Yale-Penn 1, Yale Penn 2, Yale-Penn 3, COGA. A1: effect allele; A2: non-effect allele; 
MAF: minor allele frequency in the AA subset of the Yale-Penn cohort; P: P-value; Direction: effect direction of A1
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FTO has also been associated with alcohol dependence [44-46] and connectivity in a dopamine-dependent 
reward circuit of meso-striato-prefrontal regions of the human brain [57]. PTPRZ1 binds to two neurotrophic 
cytokines [pleiotrophin (PTN) and midkine (MK)] that, along with other functions, contribute to the extinction 
of cocaine and amphetamine-seeking behaviors [47, 48] and limit morphine withdrawal syndrome [58]. The 
variants we identified, however, were ~100 KB away from the gene and may not strongly suggest a role for 
this gene in SUD risk. The top gene identified through gene based tests, CACNA1B in EAs for CD TD, encodes 
a pore-forming subunit of the presynaptic neuronal voltage-dependent calcium channel. Genes from this 
family of neuronal regulators of calcium and potassium levels were associated with their respective traits 
in our previous OD and CD GWAS papers [13, 18]. This, along with the fact that the membrane polarization 
gene set was significantly enriched among our results provides further evidence for the role of genetically 
determined differences in synaptic membrane potential acting as mediators of addiction risk.

We also looked up the results for the top TD SNPs in our previously published CD [18] and OD [13] GWAS 
of case-control status where controls were exposed to cocaine or opioids. There was modest evidence for 
association of each TD GWS variant identified with risk of dependence (not TD) on the respective substances, 
although not at the GWS level. Rs61835088 (P = 0.007) and rs2825295 (P = 0.001) were associated with binary 
CD diagnosis, and rs4860439 (P = 1.11 × 10-6) and rs7032521 (4.10 × 10-7) with OD diagnosis. The OPRM1 
OD variant (rs1799971) identified by Polimanti et al. [16] and Zhou et al. [19] was nominally associated with 
OD TD in Yale-Penn EAs (P = 0.05).

Limitations
The primary limitation of this work is the relatively small sample size compared to other GWAS of complex 
disease. Also, the Yale-Penn sample had exclusion criteria for major psychiatric comorbidities including 
schizophrenia and suicidal ideation, which could have led to the exclusion of people with severe, possibly 
highly ‘genetically-driven’ CD or OD. Third, we did not detect GWS associations with our TD phenotypes with 
the top genes identified through the corresponding binary trait analyses, or vice versa. While we hypothesize 
that we may be detecting biologically distinct pathways and/or achieved better power (given the sample 
sizes) by using survival models, an alternative hypothesis is that our models were more prone to error and 
false positives.

In conclusion, although our findings were derived from a relatively small sample compared to those used 
for GWAS of other complex psychiatric diseases, we identified significant associations in genes never before 
implicated in SUD risk, one of which, in contrast to the top findings from published dependence diagnosis 
GWAS papers, showed evidence for association in both AA and EA ancestry groups. Although the effect size 
is small and the effect of the variant has little if any implication for the prediction or treatment of SUDs, it 
may point to a novel SUD-relevant pathway. Measuring gene and gene network expression changes after 
perturbing FAM78B in cell lines or mouse models would be a logical next step to determine if such a pathway 
exists. This work also highlights the value of analyzing related phenotypes for addictive disorders given the 
scarcity of risk genes identified through dependence diagnosis GWAS.

Abbreviations
AAs: African Americans
AASS: alpha-aminoadipic semialdehyde synthase
CACNA1B: calcium voltage-gated channel subunit alpha1 B
CATS: the Comorbidity and Trauma Study
CD: cocaine dependence
COGA: the Collaborative Study on the Genetics of Alcoholism
EAs: European Americans
FAM78B: family with sequence similarity 78-member B
FTO: FTO alpha-ketoglutarate-dependent dioxygenase

https://doi.org/10.37349/emed.2021.00032


Explor Med. 2021;2:60–73 | https://doi.org/10.37349/emed.2021.00032 Page 69

GWAS: genome-wide association studies
GWS: genome-wide significant
IBD: identity-by-decent
MAF: minor allele frequency
mQTL: methylation QTLs
OD: opioid dependence
OPRM1: opioid receptor mu 1 gene
PC: principal components
QC: quality control
SNP: single nucleotide polymorphism
SSADDA: Semi-Structured Assessment for Drug Dependence and Alcoholism
SSAGA: Semi-Structured Assessment for the Genetics of Alcoholism
SUD: substance use disorder
TD: time-to-dependence

Supplementary materials
The supplementary materials for this article are available at: https://www.explorationpub.com/uploads/
Article/file/10032_sup_1.

Declarations
Author contributions
JG, LAF, HRK, HJE, EN, NGM, and LD contributed conception and design of the study; CZ, EJ, and LW, and 
RS performed the statistical analysis; RS wrote the first draft of the manuscript; all authors contributed to 
manuscript revision, read and approved the submitted version.

Conflicts of interest
Dr. Kranzler is a member of an advisory board for Dicerna Pharmaceuticals and a member of the American 
Society of Clinical Psychopharmacology’s Alcohol Clinical Trials Initiative (ACTIVE Group), which over the 
past three years was supported by Alkermes, Amygdala Neurosciences, Arbor Pharmaceuticals, Ethypharm, 
Indivior, Lundbeck, Mitsubishi, and Otsuka. Drs. Kranzler and Gelernter are named as inventors on PCT patent 
application #15/878,640 entitled: “Genotype-guided dosing of opioid agonists”, filed January 24, 2018. In the 
past three years, Dr. Degenhardt has received untied educational grant funding from Indivior and Seqirus. No 
other authors reported potential conflicts of interest.

Ethical approval
This study was approved by the Institutional Review Boards of Boston University, Yale University and the 
University of Pennsylvania.

Consent to participate
Informed consent to participate in the study was obtained from all participants.

Consent to publication
Not applicable.

Availability of data and materials
Summary statistics for GWAS analyses will be provided by the corresponding author upon request.

https://doi.org/10.37349/emed.2021.00032
https://www.explorationpub.com/uploads/Article/file/10032_sup_1
https://www.explorationpub.com/uploads/Article/file/10032_sup_1


Explor Med. 2021;2:60–73 | https://doi.org/10.37349/emed.2021.00032 Page 70

Funding
This study was supported by National Institutes of Health grants RC2 DA028909, R01 DA12690, R01 
DA12849, R01 DA18432, R01 AA11330, R01 AA017535, 2P50-AA012870, VA Connecticut Healthcare Center, 
Philadelphia VA MIRECCS, and National Center for Post Traumatic Stress Disorder. The funders had no role in 
study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright
© The Author(s) 2021.

References
1. GBD 2016 Alcohol and Drug Use Collaborators. The global burden of disease attributable to alcohol and 

drug use in 195 countries and territories, 1990-2016: a systematic analysis for the Global Burden of 
Disease Study 2016. Lancet Psychiatry. 2018;5:987-1012.

2. Rummans TA, Burton MC, Dawson NL. How good intentions contributed to bad outcomes: the opioid 
crisis. Mayo Clin Proc. 2018;93:344-50.

3. Case A, Deaton A. Mortality and morbidity in the 21st century. Brookings Pap Econ Act. 2017;2017: 
397-476.

4. Degenhardt L, Grebely J, Stone J, Hickman M, Vickerman P, Marshall BDL, et al. Global patterns of opioid 
use and dependence: harms to populations, interventions, and future action. Lancet. 2019;394:1560-79.

5. Clark CB, Zyambo CM, Li Y, Cropsey KL. The impact of non-concordant self-report of substance use in 
clinical trials research. Addict Behav. 2016;58:74-9.

6. Compton WM, Thomas YF, Stinson FS, Grant BF. Prevalence, correlates, disability, and comorbidity of 
DSM-IV drug abuse and dependence in the United States: results from the national epidemiologic survey 
on alcohol and related conditions. Arch Gen Psychiatry. 2007;64:566-76.

7. Degenhardt L, Singleton J, Calabria B, McLaren J, Kerr T, Mehta S, et al. Mortality among cocaine users: a 
systematic review of cohort studies. Drug Alcohol Depend. 2011;113:88-95.

8. Roy A. Characteristics of cocaine dependent patients who attempt suicide. Arch Suicide Res. 2009;13: 
46-51.

9. Chan B, Kondo K, Freeman M, Ayers C, Montgomery J, Kansagara D. Pharmacotherapy for cocaine use 
disorder-a systematic review and meta-analysis. J Gen Intern Med. 2019;34:2858-73.

10. Mistry CJ, Bawor M, Desai D, Marsh DC, Samaan Z. Genetics of opioid dependence: a review of the genetic 
contribution to opioid dependence. Curr Psychiatry Rev. 2014;10:156-67.

11. Kendler KS, Karkowski LM, Neale MC, Prescott CA. Illicit psychoactive substance use, heavy use, abuse, 
and dependence in a US population-based sample of male twins. Arch Gen Psychiatry. 2000;57:261-9.

12. Kendler KS, Prescott CA. Cocaine use, abuse and dependence in a population-based sample of female 
twins. Br J Psychiatry. 1998;173:345-50.

13. Gelernter J, Kranzler HR, Sherva R, Koesterer R, Almasy L, Zhao H, et al. Genome-wide association 
study of opioid dependence: multiple associations mapped to calcium and potassium pathways. Biol 
Psychiatry. 2014;76:66-74.

14. Cheng Z, Zhou H, Sherva R, Farrer LA, Kranzler HR, Gelernter J. Genome-wide association study identifies 
a regulatory variant of RGMA associated with opioid dependence in European Americans. Biol Psychiatry. 
2018;84:762-70.

15. Nelson EC, Agrawal A, Heath AC, Bogdan R, Sherva R, Zhang B, et al. Evidence of CNIH3 involvement in 
opioid dependence. Mol Psychiatry. 2016;21:608-14.

16. Polimanti R, Walters RK, Johnson EC, McClintick JN, Adkins AE, Adkins DE, et al. Leveraging genome-
wide data to investigate differences between opioid use vs. opioid dependence in 41,176 individuals 
from the Psychiatric Genomics Consortium. Mol Psychiatry. 2020;25:1673-87.

https://doi.org/10.37349/emed.2021.00032


Explor Med. 2021;2:60–73 | https://doi.org/10.37349/emed.2021.00032 Page 71

17. Cabana-Dominguez J, Shivalikanjli A, Fernandez-Castillo N, Cormand B. Genome-wide association meta-
analysis of cocaine dependence: shared genetics with comorbid conditions. Prog Neuropsychopharmacol 
Biol Psychiatry. 2019;94:109667.

18. Gelernter J, Sherva R, Koesterer R, Almasy L, Zhao H, Kranzler HR, et al. Genome-wide association 
study of cocaine dependence and related traits: FAM53B identified as a risk gene. Mol Psychiatry. 
2014;19:717-23.

19. Zhou H, Rentsch CT, Cheng Z, Kember RL, Nunez YZ, Sherva RM, et al. Association of OPRM1 functional 
coding variant with opioid use disorder: a genome-wide association study. JAMA Psychiatry. 
2020;77:1072-80.

20. Smith AH, Jensen KP, Li J, Nunez Y, Farrer LA, Hakonarson H, et al. Genome-wide association study of 
therapeutic opioid dosing identifies a novel locus upstream of OPRM1. Mol Psychiatry. 2017;22:346-52.

21. Anthony J, Warner L, Kessler R. Comparative epidemiology of dependence on tobacco, alcohol, 
controlled substances, and inhalants: basic findings from the National Comorbidity Survey. Exp Clin 
Psychopharmacol. 1994;2:244-68.

22. Jones CM. Heroin use and heroin use risk behaviors among nonmedical users of prescription opioid pain 
relievers-United States, 2002-2004 and 2008-2010. Drug Alcohol Depend. 2013;132:95-100.

23. Reboussin BA, Anthony JC. Is there epidemiological evidence to support the idea that a cocaine dependence 
syndrome emerges soon after onset of cocaine use? Neuropsychopharmacology. 2006;31:2055-64.

24. Sartor CE, Kranzler HR, Gelernter J. Rate of progression from first use to dependence on cocaine or 
opioids: a cross-substance examination of associated demographic, psychiatric, and childhood risk 
factors. Addict Behav. 2014;39:473-9.

25. Associations of nonmedical pain reliever use and initiation of heroin use in the United States [Internet]. 
Rockville: Substance Abuse and Mental Health Services Administration; c2013 [cited 2020 Dec 1]. 
Available from: https://www.samhsa.gov/data/sites/default/files/DR006/DR006/nonmedical-pain-
reliever-use-2013.htm

26. Gelernter J, Panhuysen C, Weiss R, Brady K, Hesselbrock V, Rounsaville B, et al. Genomewide linkage scan 
for cocaine dependence and related traits: significant linkages for a cocaine-related trait and cocaine-
induced paranoia. Am J Med Genet B Neuropsychiatr Genet. 2005;136B:45-52.

27. Sherva R, Wang Q, Kranzler H, Zhao H, Koesterer R, Herman A, et al. Genome-wide association study 
of cannabis dependence severity, novel risk variants, and shared genetic risks. JAMA Psychiatry. 
2016;73:472-80.

28. Pierucci-Lagha A, Gelernter J, Chan G, Arias A, Cubells JF, Farrer L, et al. Reliability of DSM-IV diagnostic 
criteria using the semi-structured assessment for drug dependence and alcoholism (SSADDA). Drug 
Alcohol Depend. 2007;91:85-90.

29. Malison RT, Kalayasiri R, Sanichwankul K, Sughondhabirom A, Mutirangura A, Pittman B, et al. Inter-
rater reliability and concurrent validity of DSM-IV opioid dependence in a Hmong isolate using the Thai 
version of the Semi-Structured Assessment for Drug Dependence and Alcoholism (SSADDA). Addict 
Behav. 2011;36:156-60.

30. Nelson EC, Lynskey MT, Heath AC, Wray N, Agrawal A, Shand FL, et al. Association of OPRD1 polymorphisms 
with heroin dependence in a large case-control series. Addict Biol. 2014;19:111-21.

31. Nelson EC, Lynskey MT, Heath AC, Wray N, Agrawal A, Shand FL, et al. ANKK1, TTC12, and NCAM1 
polymorphisms and heroin dependence: importance of considering drug exposure. JAMA Psychiatry. 
2013;70:325-33.

32. Bucholz KK, Cadoret R, Cloninger CR, Dinwiddie SH, Hesselbrock VM, Nurnberger JI Jr, et al. A new, 
semi-structured psychiatric interview for use in genetic linkage studies: a report on the reliability of the 
SSAGA. J Stud Alcohol. 1994;55:149-58.

https://doi.org/10.37349/emed.2021.00032
https://www.samhsa.gov/data/sites/default/files/DR006/DR006/nonmedical-pain-reliever-use-2013.htm
https://www.samhsa.gov/data/sites/default/files/DR006/DR006/nonmedical-pain-reliever-use-2013.htm


Explor Med. 2021;2:60–73 | https://doi.org/10.37349/emed.2021.00032 Page 72

33. Edenberg HJ. The collaborative study on the genetics of alcoholism: an update. Alcohol Res Health. 
2002;26:214-8.

34. Reich T, Edenberg HJ, Goate A, Williams JT, Rice JP, Van Eerdewegh P, et al. Genome-wide search for genes 
affecting the risk for alcohol dependence. Am J Med Genet. 1998;81:207-15.

35. Hesselbrock M, Easton C, Bucholz KK, Schuckit M, Hesselbrock V. A validity study of the SSAGA--a 
comparison with the SCAN. Addiction. 1999;94:1361-70.

36. Howie B, Fuchsberger C, Stephens M, Marchini J, Abecasis GR. Fast and accurate genotype imputation in 
genome-wide association studies through pre-phasing. Nat Genet. 2012;44:955-9.

37. Wetherill L, Lai D, Johnson EC, Anokhin A, Bauer L, Bucholz KK, et al. Genome-wide association study 
identifies loci associated with liability to alcohol and drug dependence that is associated with variability 
in reward-related ventral striatum activity in African- and European-Americans. Genes Brain Behav. 
2019;18:e12580.

38. Fan N, An L, Zhang M, He H, Zhou Y, Ou Y. GRIN2B gene polymorphism in chronic ketamine users. Am J 
Addict. 2020;29:105-10.

39. Xie P, Kranzler HR, Krystal JH, Farrer LA, Zhao H, Gelernter J. Deep resequencing of 17 glutamate system 
genes identifies rare variants in DISC1 and GRIN2B affecting risk of opioid dependence. Addict Biol. 
2014;19:955-64.

40. Cox DR. Regression models and life-tables. J R Stat Soc Series B Stat Methodol. 1972;34:187-220.
41. Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association scans. 

Bioinformatics. 2010;26:2190-1.
42. Watanabe K, Taskesen E, van Bochoven A, Posthuma D. Functional mapping and annotation of genetic 

associations with FUMA. Nat Commun. 2017;8:1826.
43. Pruim RJ, Welch RP, Sanna S, Teslovich TM, Chines PS, Gliedt TP, et al. LocusZoom: regional visualization 

of genome-wide association scan results. Bioinformatics. 2010;26:2336-7.
44. Polimanti R, Zhang H, Smith AH, Zhao H, Farrer LA, Kranzler HR, et al. Genome-wide association study of 

body mass index in subjects with alcohol dependence. Addict Biol. 2017;22:535-49.
45. Goodyear K, Lee MR, Schwandt ML, Hodgkinson CA, Leggio L. Hepatic, lipid and genetic factors associated 

with obesity: crosstalk with alcohol dependence? World J Biol Psychiatry. 2017;18:120-8.
46. Sobczyk-Kopciol A, Broda G, Wojnar M, Kurjata P, Jakubczyk A, Klimkiewicz A, et al. Inverse association 

of the obesity predisposing FTO rs9939609 genotype with alcohol consumption and risk for alcohol 
dependence. Addiction. 2011;106:739-48.

47. Gramage E, Perez-Garcia C, Vicente-Rodriguez M, Bollen S, Rojo L, Herradon G. Regulation of extinction of 
cocaine-induced place preference by midkine is related to a differential phosphorylation of peroxiredoxin 
6 in dorsal striatum. Behav Brain Res. 2013;253:223-31.

48. Gramage E, Putelli A, Polanco MJ, Gonzalez-Martin C, Ezquerra L, Alguacil LF, et al. The neurotrophic 
factor pleiotrophin modulates amphetamine-seeking behaviour and amphetamine-induced neurotoxic 
effects: evidence from pleiotrophin knockout mice. Addict Biol. 2010;15:403-12.

49. Zheng Z, Huang D, Wang J, Zhao K, Zhou Y, Guo Z, et al. QTLbase: an integrative resource for quantitative 
trait loci across multiple human molecular phenotypes. Nucleic Acids Research. 2019;48:D983-91.

50. Fagerberg L, Hallstrom BM, Oksvold P, Kampf C, Djureinovic D, Odeberg J, et al. Analysis of the human 
tissue-specific expression by genome-wide integration of transcriptomics and antibody-based 
proteomics. Mol Cell Proteomics. 2014;13:397-406.

51. Huttlin EL, Bruckner RJ, Paulo JA, Cannon JR, Ting L, Baltier K, et al. Architecture of the human interactome 
defines protein communities and disease networks. Nature. 2017;545:505-9.

https://doi.org/10.37349/emed.2021.00032


Explor Med. 2021;2:60–73 | https://doi.org/10.37349/emed.2021.00032 Page 73

52. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein-protein 
association networks with increased coverage, supporting functional discovery in genome-wide 
experimental datasets. Nucleic Acids Res. 2019;47:D607-13.

53. Bayer KU, De Koninck P, Leonard AS, Hell JW, Schulman H. Interaction with the NMDA receptor locks 
CaMKII in an active conformation. Nature. 2001;411:801-5.

54. Claussnitzer M, Dankel SN, Kim KH, Quon G, Meuleman W, Haugen C, et al. FTO obesity variant circuitry 
and adipocyte browning in humans. N Engl J Med. 2015;373:895-907.

55. Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, et al. A common variant 
in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. 
Science. 2007;316:889-94.

56. Smemo S, Tena JJ, Kim KH, Gamazon ER, Sakabe NJ, Gomez-Marin C, et al. Obesity-associated variants 
within FTO form long-range functional connections with IRX3. Nature. 2014;507:371-5.

57. Sevgi M, Rigoux L, Kuhn AB, Mauer J, Schilbach L, Hess ME, et al. An obesity-predisposing variant of the 
FTO gene regulates D2R-dependent reward learning. J Neurosci. 2015;35:12584-92.

58. Gramage E, Vicente-Rodriguez M, Herradon G. Pleiotrophin modulates morphine withdrawal but has no 
effects on morphine-conditioned place preference. Neurosci Lett. 2015;604:75-9.

https://doi.org/10.37349/emed.2021.00032

	Abstract 
	Keywords 
	Introduction 
	Materials and methods 
	Participants and diagnostic procedures 
	Phenotype definition 
	Genotyping, imputation and quality control (QC) 
	Statistical analysis 

	Results
	Discovery GWAS results 
	Gene and gene set analyses 
	Replication results 
	Discovery + replication results 
	Functional annotation 

	Discussion
	Limitations

	Abbreviations
	Supplementary materials 
	Declarations
	Author contributions 
	Conflicts of interest 
	Ethical approval 
	Consent to participate 
	Consent to publication 
	Availability of data and materials 
	Funding
	Copyright

	References

