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Abstract
The cardiovascular system remains vulnerable to a multitude of threats, including infections, inflammation, 
and oxidative stress. These factors contribute significantly to the development and progression of 
cardiovascular diseases, a pressing global health concern. Historically, research into natural medicines has 
primarily focused on isolated compounds. However, complex natural entities like essential oils, rich in 
diverse chemical constituents, offer superior therapeutic potential. We discuss here how their inherent 
variability can lead to unpredictable synergistic and antagonistic effects, hindering consistent therapeutic 
outcomes. This inconsistency is particularly problematic in addressing the rising incidence of perioperative 
infections and the need to combat radical-mediated damage and subclinical inflammation. This scoping 
review departs from the hypothesis “Can we leverage complex natural products for the discovery of new 
clinical approaches to cardiovascular diseases encompassing inflammation and infection?”. Therefore, we 
delve into the potential of complex natural products, particularly essential oils, in preventing 
cardiovascular infections and mitigating oxidative damage, emphasizing the crucial role of artificial neural 
networks (ANNs) in advancing this field. The review emphasizes the need for multidisciplinary 
collaboration to generate quality data for effective ANN analysis, envisioning future integration of omics 
technologies with ANNs for more precise predictions of natural product activities. It addresses challenges 
in translating AI-designed essential oils to clinical practice, including intellectual property protection and 
standardization issues due to regional variability, suggesting a potential role for the World Health 
Organization in establishing guidelines for essential oil specifications to ensure consistent efficacy while 
enabling global accessibility. The author concludes by stressing the need to address ethical considerations 
at the intersection of technology, science, and clinical practice, particularly regarding the proprietary status 
of essential oils versus making them freely available worldwide.
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Introduction
Heart and circulatory disease, also known as cardiovascular disease (CVD), is a major cause of death and 
disability. The World Health Organization (WHO) predicts that 22.2 million people will die from CVD in 
2030 [1]. In the UK, it affects around seven million people and is considered the single biggest condition 
where lives can be saved by the National Health System (NHS) over the next 10 years [2].

The high-risk factors in cardiovascular health include infections, inflammation, and oxidative stress. 
These elements can significantly contribute to the development and progression of CVD, posing significant 
challenges to global health. Infection and chronic inflammatory diseases, such as rheumatoid arthritis, 
systemic lupus erythematosus, and psoriasis are associated with an increased risk of CVD: they induce the 
acute-phase response, leading to multiple alterations in lipid and lipoprotein metabolism thus leading to 
atherogenesis [3]. Several infectious agents such as Staphylococcus aureus, Escherichia coli, and Candida 
albicans are responsible for the most common life-threatening infections in the cardiovascular system. One 
such is endocarditis, one of the fourth most common life-threatening infections together with sepsis, 
pneumonia, and intraabdominal abscess, with S. aureus being the most frequently identified pathogen [4]. 
While this shift is partially attributable to an increased rate of i.v. drug abuse but healthcare-associated and 
nosocomial infections have become increasingly common, representing about 30% of all endocarditis cases 
[5], such as dental invasive procedures [6] or heart implants and transplants [7, 8]. Many even argue that 
oral bacteria-related infective endocarditis is likely to result from daily activities (e.g., tooth brushing, 
flossing, and chewing), particularly in those with poor oral hygiene [6]. Infective endocarditis caused by E. 
coli is a relatively rare condition, but its incidence is on the rise, particularly among older women. 
Moreover, it carries a higher mortality rate compared to endocarditis caused by the Haemophilus-
Aggregatibacter-Acardiobacterium-Eikenella (HACEK) group bacteria [9]. E. coli is also relevant in the 
epidemiology of bloodstream infections caused by hematopoietic stem cell transplantation [10]. Research 
also suggests a strong link between infections, particularly bacteraemia and sepsis, and the development of 
endothelial dysfunction, which can lead to CVD-like atherosclerosis caused by a range of microorganisms, 
such as E. coli and C. albicans [11]. The latter is mostly associated with naturally- or chemically- 
immunoexpressed patients in the aftermath of transplants and cardiac prosthetic surgery [12]. All three 
above-mentioned bacteria were also found associated with ventilator-associated pneumonia, which is the 
most common and serious nosocomial infection that threatens patients who have undergone cardiac 
surgery [13].

The interplay between infections and oxidative stress is a complex one. Infections can trigger oxidative 
stress, as the immune system generates ROS to combat invading pathogens. Conversely, oxidative stress can 
weaken the immune system, making individuals more susceptible to infections [14, 15]. This vicious cycle 
can perpetuate CVD and make it difficult to treat. The delicate balance between pro- and anti-inflammatory 
mediators can be disrupted, leading to an increase in oxidative stress [16]. This oxidative stress can directly 
target lipids, particularly low-density lipoprotein (LDL). Oxidized LDL, in turn, becomes a potent trigger for 
inflammation, further exacerbating the cycle. Moreover, inflammation can impair the function of high-
density lipoprotein (HDL), a protective factor that helps remove excess cholesterol from the arteries. This 
“assault” on both LDL and HDL can contribute to the formation of atherosclerotic plaques, ultimately 
increasing the risk of heart disease and stroke. Experiments in hamsters and mice have shown that blocking 
the production of leukotrienes or using antioxidants can effectively reduce the adhesion of white blood cells 
to blood vessel walls caused by oxidized low-density lipoprotein (oxLDL) [17]. Thus, understanding the 
intricate connections between inflammation, infection, and lipid oxidation (illustrated in Figure 1) is crucial 
for developing effective strategies to prevent and manage CVD [18].
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Figure 1. Interplay of inflammation, infection, and lipid oxidation in CVD. LOX: lipoxygenase; LPS: lipopolysaccharide; 
oxLDL: oxidized low-density lipoprotein; XOD: xanthine oxidase; MDA: malondialdehyde; LTB4: leukotriene B4; PGE2: 
prostaglandin E2; ROS: radical oxygen species

In terms of therapeutic interventions, antibiotic therapy can be used to treat infections, while 
antioxidant supplements and medications can help combat oxidative stress and indirectly stop the vicious 
loop of chronic or sub-clinic inflammation illustrated in Figure 1. However, the increased resistance to 
existing antibiotics [19] and the mixed results of the use of antioxidant supplements [20] calls for further 
research to determine the optimal use of these interventions.

Methodology
This is a scoping review to test the hypothesis “Can we leverage complex natural products (NPs) for the 
discovery of new clinical approaches to CVD diseases encompassing inflammation and infection?”. The 
search in PubMed and Google Scholar was run with the keywords [“cardiovascular” AND (“Natural Product” 
OR “ESSENTIAL OIL”)]. Only articles that met the requirement to address the pros- and cons- of the 
hypothesis were retained.

Natural products in CVD
The NPs in modern medicine and drug discovery is indispensable. They keep being a source for lead 
compounds, with approximately one-third of the current drug armamentarium directly or indirectly 
originating from nature [21]. Therefore, they may well be the source of new approaches to address the 
challenges posed by infections and oxidative stress in CVD. In fact, a recent review highlighted that modern 
cardiovascular therapies include NPs sourced from a variety of origins, including 53 from plants, 33 from 
animals, and 17 from microorganisms. Importantly, they found that over 20 molecules isolated from or 
based on natural sources are in current development. Plants remain the primary source of NPs, primarily 
targeting conditions like hypertension, heart failure, heart failure with myocardial hypertrophy, 
thrombosis, and arrhythmias. These NPs encompass diverse structures, such as alkaloids, cardiac 
glycosides, mucopolysaccharide sulphates, flavonoids, esters, lactones, and others. Among these, alkaloids 
and cardiac glycosides are the most prevalent [22].
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But the examples above are what we call “single chemical entities” (i.e. single molecules). In this paper, 
we are going to focus on the potential of “complex chemical entities” (i.e. extracts or fractions from NPS 
containing dozens of components). Complex NPs have the advantage of a multi-targeted action, thus 
potentially overcoming resistance from infectious agents for longer than isolated molecules [23]. 
Components of complex NPs often exhibit synergistic, antagonistic, or additive effects, as extensively 
reviewed [24, 25], and in particular here is good evidence for synergies playing a big role on their 
antimicrobial [26] and antioxidant [27] activities.

There are already antecedents of the clinical use of complex NPs even for critical conditions despite the 
challenges in unravelling their full chemical complexity and the difficulty of assigning their pharmacological 
effects to a single compound. A case in point is how the U.S. Food and Drug Administration (FDA) opened 
their use as long as the composition can be defined to a certain extend and its efficacy can be ascertained in 
clinical trials [28]. Two examples of botanical drugs approved by the FDA are sinocatechins—a 
concentrated extract of green tea standardised in catechins [29] and crofelemer—a fraction of the sap of 
the Dragon’s blood tree (Croton leichlerii) standardised in condensed tannins [30] for the treatment of 
genital warts and acquired immunodeficiency syndrome (AIDS)-associated non-infectious diarrhoea, 
respectively.

This paper wants to focus on volatile NPs fractions [commonly known as “essential oils (EOs)”] which 
(despite its recognised therapeutic potential) is an underrepresented class in the CVD armamentarium so 
far [31]. For this we build up our pioneering work on the application of artificial intelligence (AI) in the 
modelling of their antioxidant [32] and antimicrobial [33, 34] activities. EOs present unique analytical, 
pharmacokinetic, and pharmacological advantages: their composition can be ascertained up to 90–99% by 
exploiting gas-chromatography mass-spectrometry (GC-MS) [35] contrarily with other types of extracts, 
they readily pass biological membranes as wells as being endowed with powerful bioactivities [36].

Why do complex NPs need to leverage AI to become a clinical option?
The evaluation of the antimicrobial activity of NPs is complicated by the fact that their activity often cannot 
be attributed to a single compound. Instead, the overall effect may result from complex interactions 
between multiple components, including synergistic and antagonistic effects [37]. This complexity makes it 
challenging to fully understand and predict the antimicrobial activity of EOs through traditional laboratory 
experiments.

In fact, EOs exert their effects through a combination of specific and non-specific mechanisms that are 
not fully understood [38]. The antimicrobial activity of EOs is influenced by a complex interplay of chemical 
properties and mechanisms of action. Different monoterpenes, the primary components of many EOs, can 
penetrate cell membranes at varying rates, disrupting their structure and function and compromising their 
ability to maintain ion gradients [39]. It might be expected that Gram-positive bacteria, with their simpler 
cell wall structure, would be more susceptible to EOs than Gram-negative bacteria. However, membrane 
permeability is just one factor, and the specific mode of action can vary across different microorganisms. 
For example, tea tree oil is known to increase membrane permeability thus inducing ion leakage in E. coli 
and S. aureus but also inhibits microbial respiration [40].

Studies over the past 20 years have also demonstrated the potential of EOs and their compounds to 
combat CVD risk factors like hypertension, dyslipidemia, and diabetes, primarily through direct effects, 
modulation of related targets, and general cellular protection. Monoterpenes are prominent in hypotensive 
and anti-dyslipidemic/antidiabetic effects, while phenylpropanoids excel in anti-platelet activity. However, 
clinical trials are limited, and factors like volatility and chemical variability necessitate careful 
consideration for effective clinical application [41, 42]. Despite the medical community’s critical stance 
towards complementary therapies, there is often preliminary evidence suggesting the beneficial effects of 
aromatherapy in CVD patients [43, 44], thus fuelling ongoing debates questioning their true efficacy [45, 
46] without reaching a clinical consensus.
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AI offers a promising approach to modeling such complex, poorly characterized processes. By focusing 
on the input and output, artificial neural networks (ANNs) can effectively capture the relationship between 
EOs and their antimicrobial activity, without requiring a detailed understanding of the underlying 
mechanisms [47, 48]. Moreover, it has been demonstrated that they can also link pharmacokinetic and 
pharmacodynamic profiles of NPs with multiple cardioprotective mechanisms, as well as providing a simple 
method for identifying and ranking the relative contribution to the multiple therapeutic effects of the 
natural drugs [49].

AI has been shaping our lives for a while before the public became fully aware of its existence with the 
introduction of chatbots and virtual assistants. They are based on ANNs which have been also applied in 
many disparate areas of medical science including the prediction of bioactivities in toxicology and 
pharmacology [50], microbiology [51], or the optimization of drug design [47].

The concept of predicting the bioactivity of any NP based on its unique chemical composition gained 
traction among scientists in the late 20th century, but systematic exploration was limited due to the 
experimental challenges of characterizing the intricate interactions between numerous components [37]. 
Machine learning offers significant advantages in predicting NP bioactivity based on their chemical 
composition. Unlike traditional statistical methods, machine learning models, particularly ANNs, can 
effectively detect complex non-linear relationships between variables, identify all possible interactions 
without relying on complex equations, and operate with less stringent statistical expertise. However, ANNs 
also have limitations. Their “black box” nature, where the internal mechanisms of the process remain 
largely unknown, necessitates large training datasets to accurately estimate the numerous weights within 
the model.

The applications of ANNs in this field encompass classification (pattern recognition), prediction, and 
modelling [52]. Therefore, the use of ANNs may overcome these difficulties thus becoming a convenient 
computational tool allowing the pharmaceutical industry to select herbal extracts or EOs with optimal 
chemical activities (such as antioxidant), antimicrobial properties, and/or pharmacological activities (such 
as anti-inflammatory properties, absorption, metabolism, distribution, and excretion) [50, 53]. This is not 
trivial, as NPs are notoriously complex in terms of chemical composition, which may significantly vary 
depending on the batch and the supplier. This variability implies a constant use of laboratory analysis. 
ANNs able to model and predict such properties would result in savings and enhanced consistency of the 
final product. The use of such computational models holds the potential to overcome (and take into 
account) all the possible (bio) chemical interactions, synergisms, and antagonisms between the numerous 
components of active natural ingredients.

The use of modern metabolomics analytical technologies to unravel the full complexity of NPs [liquid-
chromatography mass-spectrometry (LC-MS), GC-MS], high-throughput screenings (HTS) to ascertain their 
experimental bioactivities and the use of ANNs to model how different compositions lead to different 
results seems to be the rational way forward to accelerate drug discovery as illustrated by Figure 2.

Basic concepts in ANNs
To enhance accessibility for non-specialist readers, this section provides a simplified overview of the core 
concepts underlying ANNs. For a more in-depth exploration of these topics, we encourage readers to 
consult the insightful works of Krogh [54], Dohnal et al. [47], and Zupan and Gasteiger [55]. These are listed 
in order of increasing complexity for a smooth progression. For a more specific application to the modelling 
and prediction of antimicrobial activities, the reader can refer to Najjar and co-workers [48].

The programming of an artificial neurone (AN) fully mimics the functions of a biological neuron. Each 
AN receives a certain number of inputs, each of them with its own “weight”, thus indicating its importance 
among other inputs. The AN will sum up all weighted inputs and if the resulting value exceeds a “threshold” 
(also known as “bias” or “noise”) the sum is then processed using a “transfer function” and the result is 
distributed through the output to the next AN.
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Figure 2. A modern workflow to ensure consistent pharmacological efficacy of complex natural products (= complex 
chemical entities) considering synergies, antagonisms and additivities between all compounds (AI assisted bio 
standardisation). NP: natural product; AI: artificial intelligence; ANNs: artificial neural networks; LC-MS: liquid-chromatography 
mass-spectrometry; GC-MS: gas-chromatography mass-spectrometry

Each single AN works in a team of “ANNs” thus also mimicking the biological pattern of a neural 
network (NN) of interconnected neurons in a living organism. The “anatomy” of an ANN is defined by many 
factors such as the number and arrangements of layers of neurons, their interconnections, etc. Two of these 
layers are connected to the “outside world”: the “input layer” where data is presented, and the “output 
layer”, where the prediction value is obtained. All the other layers (hidden layers) are made up by neurons 
connected to each other, usually excluding neurons of the same layer.

ANNs may be arranged in various “anatomies” or “topologies”. Here, only the multilayer feed-forward 
ANN (MLF-ANN) is described in detail as it is one the most preferred when a prediction of discrete numbers 
measuring bioactivities or chemical properties is needed. Others, such as Kohonen self-organising network, 
are popularly used for classification problems. MLF-ANNs consist of multiple layers of interconnected 
nodes, or neurons. Information flows in a single direction, from the input layer through one or more hidden 
layers to the output layer. This simple yet powerful architecture makes MLF-ANNs well-suited for tasks like 
predicting numerical values, such as bioactivity or chemical properties. These are particularly useful to 
create multivariate models on science. There are no cycles or loops in the network.

Human intelligence is the most important factor in creating a successful AI model, as the ANNs are 
trained with data that are collected and curated by human researchers. A partial or irrelevant dataset will 
result in a seriously biased or noisy AI model, respectively. Part of the data (input/variables and 
output/results) are selected to train the ANN. In a “supervised” model, the algorithm then calculates the 
output with current weights and biases using a series of “cycles”. Each one tries to approach the output, and 
the resulting value is compared with the real output to inform the algorithm on how to adjust the weights 
and biases. This cycle is repeated until the difference between targeted and calculated values is as close as it 
can get. The most applied supervised algorithms are based on gradient methods [for example ‘back 
propagation’ and genetics (genetic algorithms)]. While the supervised learning algorithm requires the 
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knowledge of output values, the unsupervised does not need them. It produces its own output which needs 
further evaluation by humans.

Once the ANN has completed its training process, it’s crucial to assess its performance. This involves 
testing the network’s ability to predict outcomes on a separate validation dataset. By providing only the 
input values to the network, we can compare its calculated outputs to the actual known outputs. This 
comparison, often visualized graphically by linear regressions, allows us to evaluate the network’s 
accuracy.

Limitations of AI approaches
The above claims about the capabilities and benefits of AI modelling to leverage the bioactivity of complex 
NPs in CVD have to be put into the right context to understand its limitations in the field of complex 
biological interactions. By definition, the algorithm of a NN relies on the weights of every interaction 
between the individual ANs and these are set by trial and error after training with a dataset which is always 
large but not exhaustive and even could contain noise or be biased as previously explained by Krogh [54], 
Dohnal et al. [47], and Zupan and Gasteiger [55]. Therefore, it is not based on a true understanding of the 
underlying biological processes. This “true” understanding is only achieved using other methods such as 
“systems biology” or “network biology” using tools such as Cytoscape [56]. They rely on “computational 
biological networks” which have been built with current scientific mechanistic understanding [57]. Another 
similar powerful tool is “gene network”, as highlighted in our recent approach to understanding the 
cytotoxic effects of NPs against melanoma cells [58]. In short, whilst ANNs are powerful, their reliance on 
high quality training data is critical and their predictions warrant caution and constant validation with 
other approaches.

Methodological aspects for the modelling of antioxidant and antimicrobial 
volatiles in EOs
The key aspects of the dataset curation are the data retrieval and the selection of inputs. The dataset for the 
antimicrobial volatiles in EOs was made of scientific reports using the National Committee for Clinical 
Laboratory Standards standardized method for zone diameter measurements [59]. Only those reporting 
similar inhibitory values for the same antibiotics of reference were retained in order to minimise the 
“noise” of the dataset. The selected EOs comprised 180 different compounds (inputs). To reduce the 
complexity of the NN, two strategies were considered to reduce the number of inputs: (1) retain the 
compounds with evidence of antimicrobial properties only or (2) discard the compounds without known 
antimicrobial activity and/or present at very low percentages (≤ 5%). The first strategy resulted in 22 
inputs (Table 1), while the second 75 (the 22 principal antimicrobial agents present in the first one plus 
other major compounds characteristic of the EOs with unknown or non-significant antimicrobial activity). 
The second dataset was not better than the first in the predictions. In this case, the value of the inhibition 
was normalised between 0 and 100. The criteria to classify the accuracy of the predictions was based on 
their deviations from the reported (“real”) inhibitory diameters (ΔID): ΔID ≤ 5 mm was considered as very 
accurate, ΔID ≤ 10 mm represented accurate predictions, and ΔID > 10 mm would mean mistaken 
predictions [33].

To reduce noise data within the antioxidant activity dataset articles reporting similar results (±10%) 
for the positive control butylhydroxytoluene (BHT) in order as much as possible. This resulted in 80 inputs 
of which only 30 volatiles (Table 1) with the highest antioxidant activity were selected as inputs [32].

ANNs were developed and run on a personal computer using fast artificial neural network software 
ver. 1.2.0-1. This package was downloaded from its original repository (http://leenissen.dk/fann/) and 
installed following the guidelines provided by the developers. The design was always feed forward, 
multilayer, and with back-propagation. The selection of function set at Sigmoid and other settings 
optimised for each type of output.

http://leenissen.dk/fann/
http://leenissen.dk/fann/
http://leenissen.dk/fann/
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Table 1. Volatile compounds selected as inputs for the ANN modelling of antioxidant activity on in vitro models of 
lipoperoxidation and antimicrobial activity against Staphylococcus aureus, Escherichia coli, Candida albicans, and 
Clostridium perfringens

Volatile compound Antioxidant [32] Antimicrobial [33]

(E)-Anethole
syn-7-Hydroxy-7-anisylnorbornene -
Borneol
Bornyl acetate -
Camphene -
Camphor
Carvacrol
Carvone -
Caryophyllene -
p-Cymene
Eucalyptol
Eugenol -
Geijerene -
Limonene
Linalool
Linalool oxide -
Menthone
Myrcene -
Myrtanol -
Nerolidol (or peruviol) -
Ocimene -
1-Octen-3-ol -
α-Pinene
β-Pinene
Piperitone -
Pregeijerene -
Pulegone
Sabinene -
α-Terpinene -
γ-Terpinene
Terpinolene -
Terpinen-4-ol
α-Terpineol
α-Thujene -
Thymol
Thymol methyl ether -
Grey cells indicate volatiles chosen as inputs for the antioxidant and/or antimicrobial activity prediction by artificial neural 
networks (ANNs). White cells with “-” signify that the compound was not selected as an input for the activity prediction

Harnessing the power of EOs against S. aureus, E. coli, C. albicans
S. aureus

Coagulase-negative staphylococci and S. aureus are the major causative pathogens of infections associated 
with CVD. These instances are increasing and are a cause of significant morbidity and mortality [60]. S. 
aureus is a type of bacteria that can be both harmless and harmful to humans. Around 30% of people carry 
this bacterium on their bodies without experiencing any ill effects. However, S. aureus is also a major cause 
of various infections, chiefly bloodstream infections and heart valve infections, and infections associated 
with medical devices [61]. S. aureus endocarditis is debilitating and requires prompt diagnosis and 
management for enhanced positive outcomes. To further complicate matters, the rise of methicillin-
resistant S. aureus (MRSA) valvular endocarditis is causing greater morbidity and mortality rates requiring 
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antibiotic regimens frequently limited by toxicities [52, 61]. The development of new antibiotic agents is 
one of the strategies sought by the experts to overcome such caveats [62]. In this sense, numerous EOs from 
well-known and sustainable plant species have been reported to be superior to current antibiotics against 
MRSA in experimental conditions: nigella [63], eucalyptus, and peppermint [64] have minimum inhibitory 
concentration (MICs) in the order of 1–15 μg/mL but cinnamon, thyme, clove, citronella, and eucalyptus are 
active at 0.1–0.4 μg/mL [64].

Challenges to the use of complex chemical entities include variable efficacy and difficulty in ascribing 
antibiotic activity to a single component. For example, coriander EO (34 components) and its component 
linalool (accounting for 70% of the oil) inhibited bacterial growth with MIC values of 5.44 and 5.36 μg/mL, 
respectively, thus clearly implying that the latter is responsible for all the activity of the oil [65]. However, 
the activity of the whole coriander oil from other origins against methicillin-susceptible S. aureus (MSSA) 
was in the same range of MICs against MRSA [66, 67] or even double [68, 69]. In the case of tea tree oil, no 
correlation could be established between the antibiotic activity of the oil and its putative bioactive 
component 4-terpineol on MRSA. Moreover, the same authors reported that only 4 out of 10 similar tea tree 
oil batches were active against MRSA [70], thus highlighting the issue of natural variability of the sources 
[71].

The synergies between certain EOs or some of their components with antibiotics are also reported. EOs 
from coriander, ivy, and onion combinations exhibited synergistic activity with cefotaxime against S. aureus 
clinical isolates [68]. Cumin, parsley, coriander, origanum, chamomile, basil, leek, peppermint, and 
spearmint also killed 100% of MRSA when in combination with cefotaxime [68], and the EO of Chinese 
ginger (Boesenbergia rotunda) potentiated cloxacillin [72]. Turpentine EO boosted the effectiveness of 
norfloxacin and gentamicin against both Gram-negative and Gram-positive bacteria. It also amplified 
penicillin’s activity against Gram-negative bacteria [73].

We demonstrated that ANNs take into account the myriad of synergies, antagonisms, additive effects 
and the variability of the composition from batch to batch and still make an accurate prediction of the 
antibiotic effect of EOs upon MRSA [33] as seen in Figure 3.

Figure 3. Comparison between experimental values (pink squares) and AI prediction (blue diamonds) for the antibiotic 
activity (MICs) of essential oils on MRSA in three independent AI predictions. Reprinted from [33]. CC BY. MICs: minimum 
inhibitory concentration; MRSA: methicillin-resistant S. aureus; ANN: artificial neural network; AI: artificial intelligence

E. coli

E. coli is one of the most evasive bacteria causing endocarditis and sepsis due to its innate propensity to 
mutations and prolific exchange of plasmids carrying antibiotic resistance genes [74]. Therefore, finding 
new agents able to either kill it or enhance the efficacy of antibiotics is a research priority. In fact, a search 
for EOs with E. coli antibiotic effects will yield over 1,800 results in PubMed, most of them are screenings of 
EOs against one or more E. coli strains, highlighting the importance of this infective agent in NPs discovery 
and justifying the impossibility to cover all this wealth of knowledge. But in recent years, a significant 
number of them have been directed towards understanding the synergies between the EOs to reduce MICs 
values. To this end, researchers are using advanced multivariate strategies or mathematical models of 
synergy, from chequerboard methods to more refined measures of synergy such as the one Chou-Talalay 
REF. For example, to enhance the antibacterial efficacy of EOs derived from Eucalyptus camaldulensis and 
Mentha pulegium, against E. coli, Kachkoul and co-workers employed a polynomial model developed using 
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an augmented centroid simplex mixture design to identify optimal synergistic combinations of these EOs 
[75]. The individual EOs demonstrated significant inhibitory effects against E. coli, but their binary 
combinations exhibited a synergistic effect, surpassing the individual activities of the constituent EOs and 
yielding the lowest MICs against E. coli [75]. This method was also exploited by finding enhanced 
antimicrobial activity for three of the EOs from Thymus satureioides (“Azkuni thyme”), Myrtus communis 
(Mirtle), and Artemisia herba alba (white wormwood) against E. coli, S. aureus, and C. tropicalis [76].

There is also an increase in recent works dealing with the study of how individual volatile components 
may act in synergy as reported for and eugenol, cinnamaldehyde, thymol, and carvacrol against E. coli [77].

There is less abundance of studies in vivo. A study in point explored the potential of thyme EO 
dominated by thymol and 9,12-octadecadi(Z,Z)enoic acid to counteract the harmful effects of E. coli 
O157:H7 infection in rats. When rats were infected with E. coli O157:H7, they experienced significant 
changes in their blood, including increased red blood cell count, haematocrit, haemoglobin, white blood cell 
count, and platelet count. Additionally, the infection led to elevated levels of liver and kidney function 
markers, as well as increased levels of inflammatory cytokines and immunoglobulins. The infection also 
caused visible damage to the colon, liver, and kidneys. However, when the infected rats were treated with 
thyme EO, these harmful effects were mitigated. The oil helped to restore normal blood parameters, 
improve liver and kidney function, reduce inflammation, and lessen tissue damage [78].

In our works applying ANNs to predict the antibiotic activity of EOs against bacteria, we found that the 
results mirroring the difficulty and variability of therapies against the E. coli as revealed by a higher 
discrepancy in the prediction vs. real values in some cases (Figure 4), although in average the ANNs 
managed to be able to be as good as the disk inhibition model, which shows a lack of finesse and 
reproducibility when dealing with multiresistant and highly mutable bacteria [33]. We also suspect a lack of 
standardisation of the methods in many of the works published and we noticed a high variability in the 
choice of standard antibiotic by the research community, thus making the curation of the dataset very 
challenging and therefore increasing the noise of the model. We therefore call for a stricter adherence to 
standard operating procedures and a more careful identification of the strains used in research.

Figure 4. Comparison between experimental values (pink squares) and AI prediction (blue diamonds) for the antibiotic 
activity (MICs) of essential oils on E. coli in three independent AI predictions. Adapted from [33]. CC BY. MICs: minimum 
inhibitory concentration; ANN: artificial neural network; AI: artificial intelligence

C. albicans

Candida spp. belongs to the kingdom fungi. The close evolutionary relationship between fungi and humans 
makes it difficult to identify drug targets that selectively inhibit fungal growth without harming human 
cells, resulting in limited therapeutic options and a high rate of drug development failures [79]. 
Furthermore, the emergence of drug-resistant fungal strains, complex clinical trial designs, and a lack of 
reliable diagnostic tools for accurately identifying fungal infections further complicated antifungal drug 
development until now [80]. As a result, therapies against Candida spp. are difficult to be as specific and 
effective as against bacteria, vastly relaying on azole antifungals which target the exclusive use of ergosterol 
by fungi [81]. As commented in the previous section, there is an enormous number of works screening EOs 
against one or more Candida species, with a higher focus in recent years on EOs-EOs or EOs-antibiotics 
synergies [82]. Kamble and Phadke [83] described the use of the checkerboard approach to unveil a 
synergy between the EO of the leaves of Bengal quince (Aegle marmelos) and nystatin against C. albicans. 
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The method of simplex-centroid design was applied against C. tropicalis [76]. Khan and co-workers 
screened 17 EOs from common food spices (grapefruit, orange, sweet fennel parsley, celery, rosemary, 
sandalwood, corn, ginger, cinnamon, lemon, nutmeg, eucalyptus, peppermint lemongrass palmrosa and 
clove) and four pure (eugenol, cinnamaldehyde, citral and geraniol) against 18 isolates of clinical origin and 
two reference strains of C. albicans [84]. A checkerboard microtiter test was performed to evaluate the 
interaction of EOs or active compounds with fluconazole or amphotericin B. Cinnamaldehyde and EO of 
palmarosa resulted in the most active against all strains and geraniol (a moderate anti-candidal itself) 
showed a significant level of synergy with both antibiotics as shown by 16- to 32-fold reductions of their 
MICs [84]. Hleba and co-workers investigated the antifungal potential of twelve EOs and their combinations 
against four Candida species: C. albicans, C. glabrata, C. tropicalis, and C. parapsilosis [85]. The chemical 
composition of the EOs was determined using GC-MS and GC-MS flame ionization detector (FID) techniques. 
The antifungal susceptibility of the Candida strains was assessed using the VITEK-2XL system and the 
checkerboard method to calculate the fractional inhibitory concentration indexes. The results indicated that 
ginger, ho-sho (Cinnamomum camphora Nees and Eberm var. Linaloolifera fujita), absinth, dill, fennel, star 
anise, and cardamom EOs exhibited the highest antifungal activity. Among them, synergistic effects were 
observed for combinations of ginger/fennel and absinth/fennel against multiple Candida species [85]. In a 
similar study, synergistic effects of the cinnamon/fluconazole and rose geranium/fluconazole combinations 
on C. albicans were unveiled, and the mechanism of action revealed that cinnamon EO reduced the 
synthesis of ergosterol by 80% whilst rose geranium disturbs the permeability barrier of the fungal cell 
wall [86].

For less recent examples of such synergies, the reader is referred to the excellent review by 
Bhattacharya et al. [82]. These findings suggest that the combination of EOs may offer a promising strategy 
to combat antifungal drug resistance.

The application of in silico methods to predict the antibiotic effects of complex NPs against C. albicans 
started with the pioneering work of Buciński and co-workers [87]. Our work using a significantly higher 
number of inputs allowed us to make more informed predictions, but (as observed for E. coli) the treatment 
outcomes were less accurate than for bacteria (Figure 5), indicating the higher biological complexity of 
fungi which also pose serious challenges for current therapeutic interventions in CVD [12].

Figure 5. Comparison between experimental values (pink squares) and AI prediction (blue diamonds) for the antibiotic 
activity (MICs) of essential oils on C. albicans in three independent AI predictions. Reprinted from [33]. CC BY. MICs: 
minimum inhibitory concentration; ANN: artificial neural network; AI: artificial intelligence

Broad-spectrum EOs and their synergies with antibiotics: a “Swiss-army 
knife” against cardiovascular pathogens
Many EOs can kill or inhibit the growth of multiple types of microorganisms, therefore qualifying as “broad-
spectrum antibiotics”. For example, cuminaldehyde, a major component of cumin EO, but also found in the 
EOs of eucalyptus, myrrh, and cassia is able to inhibit the growth of S. aureus (ATCC 6538) and E. coli 042 
(EAEC 042) as well as some of their clinical isolates with MICs 12–24 mg/mL. Although this may seem a 
modest value, its ADME (absorption, distribution, metabolism, and excretion) in silico profile was deemed 
quite promising [88]. A similar dual S. aureus-E. coli antibiotic effect was reported for ginger EO with 
zingiberene and α-curcumene as the main components [89]. Interestingly, the EO of Dalbergia pinnata 
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(composed of 91% elemicin, and 13 other minor compounds) scavenges free radicals as well as inhibiting 
the growth of S. aureus (MIC = 0.78 μL/mL), and C. albicans (MIC = 12.5 μL/mL) without any effect on E. coli, 
thus acting as both antibiotic and antioxidant at the same time [90]. Kamble and Phadke [83] described the 
synergy between Moroccan thyme (Thymus satureioides), mirtle (Myrtus communis), and white wormwood 
(Artemisia herba-alba) EOs against E. coli, S. aureus, and C. tropicalis using the classic checkerboard 
approach. In vivo studies suggested that thyme EO also possesses multiple protective effects, including anti-
inflammatory, antioxidant, and immunomodulatory activities [78].

Whilst, most EOs have been reported to have potential therapeutic applications due to their low MICs, 
others with negligible antibiotic activity have been reported to enhance the effect of clinically used 
antibiotics but acting in synergy with them. One such NP is the Schinus terebinthifolius (turpentine) EOs 
(which contains alpha-pinene, gamma-muurolene, and myrcene as its major components) is devoid of 
clinically effective antibacterial activity but enhances the activity of norfloxacin and gentamicin against both 
E. coli and S. aureus [91]. Synergistic antibacterial effects were also observed with combinations of thymol 
and carvacrol, eugenol, cinnamaldehyde, thymol, and carvacrol against E. coli [77] and fluconazole with 
cinnamaldehyde/eugenol/limonene/eucalyptol showed a synergistic effect on C. albicans [92].

We demonstrated that ANNs can also predict the activities of EOs on two or more bacteria at the same 
time when properly trained, acting as a predictor tool for the antibiotic spectrum of complex NPs [33]. 
Moreover, our model only needed a representative number of the components (22 out of 179 different 
compounds). We are certain that predicting several bioactivities at the same time is also possible using AI, 
thus creating a shortcut to faster drug discovery in the CVD domain and others to be accurate enough to 
predict the activity of these complex chemical products (Figure 6).

Figure 6. Comparison between experimental values (pink squares) and prediction (blue diamonds) by an ANN trained 
to predict the antibiotic activity (MICs) of essential oils on both S. aureus and E. coli. Reprinted from [33]. CC BY. MICs: 
minimum inhibitory concentration; ANN: artificial neural network; AI: artificial intelligence

Harnessing the power of EOs for oxidative damage mitigation and anti-
inflammatory activities
Oxidative stress, a condition characterized by an imbalance between oxidants and antioxidants, is 
implicated in the pathogenesis of CVD. This imbalance leads to increased oxidative damage, inflammation, 
and endothelial dysfunction [20]. Early studies suggested a protective role of dietary antioxidants like 
vitamin C, vitamin E, and beta-carotene against CVD. However, subsequent randomized trials often failed to 
demonstrate significant benefits. This discrepancy may be due to factors such as incorrect antioxidant 
choice, dose, or patient selection [93]. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription 
factor that plays a crucial role in cellular defense against oxidative stress. It activates the expression of 
various antioxidant and cytoprotective enzymes. NPs have gained attention as potential sources of 
bioactive compounds with Nrf2-activating properties. These compounds may offer a promising therapeutic 
approach for CVD prevention and treatment [94]. Another effect of “oxidative bursting” is the direct 
oxidation of structural and/or functional lipids (lipoperoxidation) such as phospholipids and cholesterol of 
the cell membranes, lipoproteins [95, 96], and eicosanoids [97].
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Direct lipoperoxidation is modelled in vitro using omega 3 lipids such as linoleic acid [98] or plasma 
lipoproteins [99]. To our knowledge, the first report showing the possibility of applying ANNs to predict the 
antioxidant capacity of NPs was written by Bucinski and co-workers [100] and then our pioneering work to 
predict the antioxidant activity of EOs in the widely used in vitro model of linoleic acid oxidation achieving 
an average error of only 1–3% opened the way to predict the antioxidant capacities of EOs taking into 
account 30 components (Table 1) from a total of 80 [32].

Since the epidemiological discovery of the so-called “French Paradox”, many experimental studies and 
meta-analyses have mainly attributed this outcome to the presence in red wine of a great variety of 
polyphenolic compounds such as resveratrol, catechin, epicatechin, quercetin, and anthocyanins [101]. 
Since, dietary polyphenols have been enshrined as major protection factors to help prevent and potentially 
treat cardiovascular disorders, atherosclerosis, and keep the integrity of the vascular endothelium [102]. 
However, our findings indicate that their contribution is less relevant in EOs [32] thus, opening new 
avenues to unravel new mechanisms to prevent CVD disease with volatile terpenes such as those listed in 
Table 1.

There is also recent evidence of the link between EOs, reactive oxygen species (ROS), and antifungal 
effects. Contrarily to bacteria, fungi are eukaryotic cells and therefore, susceptible to experiencing 
mitochondrial dysfunction leading to deleterious ROS intracellular production leading to cell cycle arrest. 
Moreover, fungi use ROS to drive their transition to the hyphal state [103]. These mechanisms can be 
disrupted using EOs as shown in the model yeast Saccharomyces cerevisiae [104]. Shahina and co-workers 
demonstrated how rosemary EO and two of its main components (1,8-cineole and α-pinene) induce ROS-
dependent lethality and ROS-independent virulence inhibition in C. albicans using a chemogenomic 
profiling approach, advanced quantitative laser scanning confocal and atomic force microscopy to ascertain 
these mechanisms [105].

The modelling and prediction of purely chemical reactions involving natural molecules and ROS can be 
envisioned as relatively straightforward, even when considering a substantial number of reactants, the 
complexity of biological processes, such as inflammation, poses a far greater challenge. Antimicrobial 
activities, while involving intricate biological interactions, may still be less complex than those occurring 
within multicellular organisms. A first attempt to use ANNs in the prediction of the anti-inflammatory 
activities of complex natural (extracts from Asteraceae species) using untargeted metabolomics with no 
prior knowledge of their biological data achieved a good degree of prediction [106]. We recently 
established a multivariate statistical relationship between the inhibition of lipoperoxidation and anti-
inflammatory effect in a number of plant extracts [16] and we are working on the ANN modelling of the 
interplay between infectious agents, lipoperoxidation and pro-inflammatory mediators shown above in 
Figure 1. Future efforts to achieve translational in silico predictions of in vitro processes should follow up in 
the manner indicated by the pioneering work by Parojcić and co-workers [107].

Conclusions
This review explored the potential of ANNs in predicting the bioactivities of complex chemical entities like 
NPs, particularly volatile compounds (EOs). The increasing number and diversity of research publications 
demonstrate the promising role of ANNs in addressing infectious diseases and related oxidative stress.

To fully harness the potential of ANNs, collaborative efforts between multidisciplinary teams are 
crucial to generate high-quality experimental data and analyse it effectively. The author envisions a future 
where omics technologies and systems biology will provide real-time data to cloud-based ANNs, enabling 
increasingly precise predictions and classifications of the beneficial activities of complex NPs. In conclusion, 
the integration of AI in the analysis and prediction of the effects of complex NPs could revolutionize the 
field, leading to more consistent, effective treatments. This approach (in combination with other 
computational tools such as biological networks to overcome some intrinsic limitations) could help address 
pressing health challenges, from antibiotic resistance to chronic cardiovascular conditions, offering 
significant benefits for public health and healthcare economics.
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A significant challenge in translating AI-designed EOs into clinical practice lies in safeguarding 
intellectual property (IP) while ensuring the commercial viability of research and development (R & D). 
While a patent can effectively protect the specific composition of an “AI-designed EO”, the costs associated 
with clinical trials and regulatory approval may render a potentially inexpensive complex substance 
prohibitively expensive as a medicinal product.

Furthermore, attributing therapeutic efficacy to EOs from specific plant sources presents a significant 
hurdle. The inherent regional variability in EO composition, arising from factors such as plant origin and 
extraction methods, poses a substantial challenge to the stringent standardization requirements of the 
pharmaceutical industry.

To address this, the WHO could play a crucial role by establishing “minimum specifications and 
variability ranges” for promising EOs. These guidelines would ensure consistent efficacy while enabling 
pharmacists worldwide, including those in resource-limited settings such as developing countries and 
isolated communities, to prepare and dispense EOs according to standardized monographs, like the 
approach used for many other herbal medicines listed in the WHO Pharmacopoeia.

Therefore, future work needs to address the ethical considerations of the technological-scientific-
clinical interface and decide if EOs should become proprietary or free to the world.
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