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Abstract
Aim: COVID-19, a multisystemic syndrome caused by SARS-CoV-2, often results in long-term complications 
collectively referred to as long COVID. This study explores the persistence of neurological and 
otolaryngological symptoms in patients two years after acute infection, with a focus on gender differences 
and variant-specific effects.
Methods: A retrospective follow-up was conducted in January 2024 on 112 patients who had been 
hospitalized for COVID-19. Patients completed a questionnaire assessing the persistence of 
neuropsychiatric, otolaryngological, and systemic symptoms.
Results: Findings reveal that 18.3% of women reported persistent neuropsychiatric symptoms, such as 
memory deficits, depression, and concentration issues, compared to 5.7% of men. Otolaryngological 
symptoms, including anosmia and ageusia, largely resolved, with only 4.5% reporting persistent issues. 
Symptom persistence was more common in older individuals, women, smokers, and those with severe 
acute-phase illness. Neuropsychiatric symptoms remain prominent, underscoring the need for targeted 
long-term care.
Conclusions: Vaccination significantly reduces the risk and severity of long COVID, particularly 
neuropsychiatric symptoms, emphasizing its role in mitigating the long-term burden of SARS-CoV-2. Future 
research should explore biomolecular markers and imaging techniques to better understand and address 
these long-term sequelae.
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Introduction
The coronavirus disease 2019 (COVID-19) is a multisystemic viral septic syndrome that can affect various 
organs, with symptoms ranging from mild to potentially life-threatening. Neurological complications are 
frequently reported and may arise as direct or indirect consequences of the viral infection, medical 
treatments, systemic inflammation triggered by immune activation, or hypoxia [1]. In some cases, these 
complications may also occur as incidental associations. However, it is known that the severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has neuroinvasive potential. The term long COVID 
refers to the persistence of at least one symptom, such as fatigue, shortness of breath, cognitive decline or 
brain fog, post-exertional malaise, memory problems, musculoskeletal pain or spasms, coughing, sleep 
disturbances, rapid heartbeat or palpitations, altered sense of smell or taste, headaches, chest pain, and 
depression, in individuals with a prior diagnosis of COVID-19. Key demographic and clinical predictors 
identified so far include being female, older age, smoking, pre-existing medical conditions, lack of COVID-19 
vaccination, infection with pre-Omicron SARS-CoV-2 variants, the number of acute-phase symptoms, high 
viral load, severe or critical COVID-19 illness, and the need for invasive mechanical ventilation.

Growing evidence suggests that our microbiota plays a crucial role in regulating the immune system 
and controlling inflammation. When its balance is disrupted, it could contribute to the lingering symptoms 
of long COVID. Recent studies have even found that changes in the nasal microbiota might be linked to the 
persistence of post-COVID symptoms. This sheds new light on how our microbiota isn’t just involved in the 
initial infection but may also influence long-term recovery, paving the way for potential new treatments [2]. 
In particular, recent research has described how changes in the nasal microbiota may be linked to the 
chronic persistence of post-COVID-19 symptoms [3]. The microbiota of the upper airways plays a crucial 
role in defending against respiratory infections by influencing both local immune responses and 
inflammation regulation. Changes in its composition could contribute to the persistence of symptoms like 
fatigue, shortness of breath, brain fog, and olfactory disturbances, which are common in long COVID. Recent 
studies suggest that imbalances in the nasal microbiota may promote chronic inflammation and hinder 
tissue repair, offering new insights into the pathophysiology of long COVID and potential therapeutic 
strategies.

While we still know little about the upper respiratory tract microbiota in long COVID patients, 
significant research has focused on its alterations in COVID-19 patients, including the microbiomes of the 
mouth, nose, oropharynx, and especially the nasopharynx. In many cases, this dysbiosis persists even after 
the SARS-CoV-2 virus and the acute symptoms of the disease have disappeared. It is particularly 
noteworthy that changes in the oral microbiota of long COVID patients have been observed, potentially 
contributing to ongoing inflammation, strengthening the idea that the upper respiratory tract microbiota 
plays a key role in the development of long COVID.

In addition, more research will be needed to understand whether dysbiosis can lead to the release of 
bacterial toxins, which could impact mitochondrial function and contribute to the chronic fatigue many long 
COVID patients experience. What’s even more important, though, is that we still don’t fully understand the 
roles of factors like the virome, microbiome, metabolome, and meta-transcriptome in long COVID patients. 
These elements may also play a significant role in the disease’s development, so they definitely need more 
attention in future studies [4].

A retrospective study [5] offers a detailed look at the connection between the microbiota and COVID-
19. The respiratory, intestinal, and oral systems are all susceptible to SARS-CoV-2 infection, and the 
microorganisms in these areas undergo significant changes. These disruptions can affect tissues and organs 
throughout the body, triggering cytokine storms, damaging immune barriers, and suppressing immune 
responses. Additionally, metabolites produced by the microbiota may influence immunity in various ways; 
for instance, short-chain fatty acids could help reduce viral infection by lowering the expression of 
angiotensin-converting enzyme 2 (ACE2) and TMPRSS2 genes. The microbiota can also interact with ACE2, 
the primary receptor that allows the virus to enter human cells. It’s been recognized as a potential 
diagnostic biomarker for a range of diseases. For instance, intestinal dysbiosis can persist long after the 
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virus is gone, leading to lasting effects on the body. As a result, clinical care shouldn’t just focus on removing 
the virus but should also aim at restoring the balance of the intestinal microbiota to support long-term 
health [6, 7].

However, this argument does have its limitations: it’s challenging to say with certainty whether the 
changes in the microbiota are directly caused by COVID-19 or are the result of treatments, individual 
factors, diet, or other variables. Additionally, we still don’t fully understand the exact mechanisms through 
which the microbiota affects the severity and susceptibility to COVID-19. By studying how the microbiota 
interacts with the body’s immune system, we may be able to develop targeted interventions to improve the 
effectiveness of vaccines.

Based on this universally agreed-upon definition, long COVID can be summarized as a clinical 
syndrome characterized by the persistence of at least one typical COVID-19 symptom that has not resolved 
three months after recovering from an acute SARS-CoV-2 infection.

Accurately estimating the epidemiological burden of long COVID, as well as identifying its predictors, 
remains challenging. This is largely due to the use of varying definitions and follow-up durations, as well as 
the inclusion of diverse populations with differing demographic characteristics (such as age, gender, and 
ethnicity) and clinical profiles (including disease severity, comorbidities, and vaccination status).

What sets long COVID apart from other post-viral syndromes is its significantly higher epidemiological 
burden, with prevalence estimates up to six times greater than similar conditions following other viral 
infections (up to 63% compared to approximately 10%) [8]. Notably, when these figures are considered 
alongside official WHO statistics (650 million diagnosed SARS-CoV-2 infections by the end of 2022), it 
suggests that up to 400 million people worldwide (a conservative estimate) could potentially seek care for 
long COVID in the near future. This would place unprecedented strain on an already overburdened and 
depleted healthcare system.

Materials and methods
In January 2024, two years after the initial hospitalization, we conducted a follow-up to monitor the health 
conditions of the 112 patients examined, divided into 52 men and 60 women (Figure 1). These patients 
were interviewed via phone and given a questionnaire about the current state of their clinical symptoms in 
both the otolaryngological and neurological areas. The Sapienza University of Rome Hospital Ethical 
Committee approved this retrospective study (Ref. 6536), and all the study procedures followed the 
Helsinki Declaration of 2013, for human rights and experimentation. This retrospective study was 
conducted at the University Hospital “Policlinico Umberto I” in Rome.

Results
The retrospective study conducted in January 2024 reveals that, despite the Omicron variant causing a 
reduction in otolaryngological symptoms (anosmia, ageusia, dizziness) both during the acute phase and 
over time, neuropsychological symptoms remain more prominent. The findings indicate a higher incidence 
of neuropsychiatric alterations compared to the non-hospitalized post-COVID-19 population during the 
acute phase.

The study significantly highlights the persistence of neurological symptoms in a large proportion of 
patients hospitalized during the acute phase. This clinical-epidemiological observation must be carefully 
evaluated and further investigated. This will involve expanding our analysis with a larger sample and using 
targeted questionnaires, imaging techniques, and the identification of biomolecular markers to explore the 
long-term neurological consequences of SARS-CoV-2 infection, also known as NeuroCOVID.

The questionnaire results showed that 18.3% of the women reported neuropsychiatric alterations 
24 months later, such as memory deficits, periods of depression or anxiety, and concentration problems. 
Among the 52 men, only 5.7% reported cognitive performance changes. In contrast to the variants before 
Omicron, otolaryngological symptoms like anosmia, ageusia, sudden hearing loss, and dizziness have 



Explor Med. 2025;6:1001310 | https://doi.org/10.37349/emed.2025.1001310 Page 4

Figure 1. Follow-up analysis of neurological and otolaryngological symptoms in 112 patients. The figure indicates that 
neurological symptoms at 24 months are more frequent than other symptoms, especially in women

mostly decreased or fully resolved in nearly all patients. Only 4.5% of the sample reported persistent 
symptoms in the otolaryngological domain.

Based on our study, combined with findings from other meta-analyses, we can conclude that the most 
significant predictors of symptom persistence two years after recovery were advanced age (most of the 
articles examined found that long COVID symptoms were associated with older age [9]), female sex, 
cigarette smoking, and disease severity.

Discussion
It is crucial to highlight the ongoing presence of neurological symptoms in COVID-19 patients even 
24 months after infection. Several studies have shown that these neurological issues can persist over time, 
significantly affecting patients’ overall well-being. Common symptoms include cognitive difficulties, such as 
problems with concentration and mental fatigue, as well as motor impairments. These issues, often referred 
to as “brain fog”, have been among the most disabling for those recovering from COVID-19, limiting their 
ability to perform daily tasks and diminishing their quality of life [10]. Neurological symptoms, with their 
various patterns of presentation, are among the main symptoms observed in the acute phase in patients 
who were hospitalized during the acute phase of COVID-19. A study involving 214 COVID-19 patients 
revealed that 36.4% experienced neurological symptoms, with a notably higher incidence (45.5%) in 
patients who had a severe form of the infection [11]. These neurological symptoms included acute 
cerebrovascular events, altered consciousness, and muscle damage. This data suggests that the severity of 
the respiratory infection is a key factor in the development and persistence of neurological symptoms, 
possibly indicating direct damage to the nervous system caused by the virus. Given the continued presence 
of neurological symptoms even after 24 months, it is essential to monitor patients who experienced severe 
COVID-19, paying close attention to their neurological health. Such long-term monitoring can deepen our 
understanding of the underlying mechanisms of these complications and help develop more effective 
treatment strategies to improve patients’ quality of life and reduce the long-term impact of these persistent 
symptoms. The emergence of new COVID-19 variants may impact both the severity and the persistence of 
neurological symptoms. Variants such as B.1.1.7 (Alpha), B.1.526, and B.1.351 (Beta) have shown different 
transmission patterns, immune evasion strategies, and possibly more serious clinical outcomes. For 
example, the B.1.1.7 variant, first identified in the carries mutations that enhance the virus’s ability to bind 
to the ACE2 receptor, which may lead to more severe infections and a higher likelihood of neurological 
symptoms. Similarly, the B.1.526 variant, discovered in New York, includes mutations that could alter the 
virus’s interaction with the immune system, potentially resulting in prolonged symptoms and 
complications, particularly neurological ones [12]. Given these differences, it is vital to understand how 
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these variants might influence the long-term effects of COVID-19. They may contribute to more persistent 
or severe neurological issues. As such, ongoing monitoring of patients infected with various variants is 
essential to track emerging trends in symptom duration and to adjust treatment strategies accordingly. The 
rapid development and rollout of COVID-19 vaccines began with the goal of protecting the population from 
the original SARS-CoV-2 strain, which was driving a surge in infections, particularly in densely populated 
areas [13]. Since the introduction of vaccines in 2021, numerous new variants of the virus have emerged, 
raising fresh public health concerns (Table 1). To simplify the naming and communication about these 
variants, on May 31, 2021, the WHO introduced a classification system based on the Greek alphabet, 
assigning names like Alpha, Beta, Gamma, and Delta. These new variants include, among others, D614G, 
B.1.1.7 (also known as Alpha, VOC-202012/01 or 201/501Y.V1), B.1.526, B.1.351 (also known as Beta or 
501Y.V2), B.1.1.28.1 (including P1, also known as Gamma), and B.1.617. These strains exhibit various 
mutations, many of which are located in the spike protein, leading to changes in the virus’s behavior and 
pathogenicity. Notably, alterations in the receptor-binding domain (RBD) have enhanced the virus’s ability 
to evade natural immunity. The emergence of these variants undoubtedly poses a serious threat to 
controlling the COVID-19 pandemic. One of the first significant mutations in the original SARS-CoV-2 
genome was the D614G point mutation in the spike protein, which led to the G614 variant. This mutation 
emerged early in the pandemic, first identified in Germany and China in late January 2020, before spreading 
globally [14]. Alongside this genetic change, three additional mutations were commonly observed: a C-to-T 
mutation in the 5' UTR at position 241, another similar C-to-T mutation at position 3,037, and a C-to-T 
mutation at position 14,408 in the RNA-dependent RNA polymerase (RdRp) gene [15, 16]. It has been found 
that this mutation increases both infectivity and viral replication in human tissues compared to the original 
D614 virus, although this increase in infectivity did not result in higher lethality [15, 17, 18]. The enhanced 
infectivity is linked to a greater affinity of the RBD due to the acquired mutation, as the glycine (G) replacing 
aspartic acid (D) likely provides more flexibility to the trimeric structure of the spike protein, improving its 
binding affinity [15].

In terms of therapeutic effects on the mutated variant, studies have shown that the Pfizer-BioNTech 
BNT162b2 vaccine, based on the original D614 sequence, exhibited a 1.7- to 2.0-fold reduction in 
neutralization, making it less effective [18]. On the other hand, the Moderna mRNA-1273 vaccine 
demonstrated similar neutralization levels compared to the original strain [19]. The pathogenic B.1.1.7 
variant (also known as Alpha, VOC-202012/01 or 201/501Y.V1) was first detected in the UK in December 
2020 and is now present in over 40 countries. This variant carries 17 non-synonymous mutations, 
including 8 in the spike protein and the D614G mutation. Three of the 8 mutations in the spike protein are 
particularly notable: a two-amino-acid deletion at positions 69-70, N501Y, and P681H [20]. The N501Y 
mutation has been shown to increase the affinity of the RBD for ACE2, similar to the D614G mutation. Both 
the Moderna and Novavax vaccines showed only a moderate reduction in neutralization of the B.1.1.7 
variant in vitro compared to the original strain [20, 21]. The B.1.526 variant was first identified in New 
York in November 2020, and its prevalence has since grown exponentially in the state and surrounding 
areas. Notable mutations in B.1.526 include E484K (the most significant) and S477N in the spike protein, 
along with five other common mutations: L5F, T95I, D253G, D614G, and A701V [22]. The B.1.351 variant 
(also known as Beta or 501Y.V2) was first identified in South Africa at the end of 2020 and was the 
predominant variant in the region at that time. It has shown reduced neutralization both with convalescent 
serum and serum from individuals vaccinated with the Pfizer vaccine (Table 1) [23]. The B.1.1.28 variant 
was first identified in Rio de Janeiro, Brazil, in February 2020. This variant includes the E484K mutation. 
Studies have found that the Covaxin vaccine (developed in India) significantly increased neutralization 
against this variant [24]. However, serum from individuals vaccinated with Pfizer-BioNTech and Moderna 
showed reduced neutralization of the variant. The P1 variant (also known as Gamma or 20J/501Y.V3) 
belongs to the B.1.1.28 lineage and was initially identified in travelers from Brazil who arrived in Japan. It 
carries several mutations that make it more severe, increasing infectivity and reducing neutralization by 
antibodies. As with the B.1.351 variant, serum from individuals vaccinated with Pfizer-BioNTech and 
Moderna showed reduced neutralization of the P1 variant. The most recent variant of concern is B.1.617, 
identified in India at the end of 2020. This variant has evolved into three subvariants, the most prominent 
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Table 1. SARS-CoV-2 variants and associated symptoms, emergence periods, and vaccination

Variant Neurological 
symptoms

Vestibular 
symptoms

Othorhinolaryngological
symptoms

Vaccine 
introduction and 
effectiveness

Period of emergence

Alpha 
(B.1.1.7)

Headache
Brain fog

Dizziness Loss of taste/smell
Sore throat

December 2020 
(first detected in 
the UK)

Vaccines were introduced in 
December 2020. Moderate 
reduction in neutralization for 
Moderna and Novavax vaccines 
compared to the original strain.

Beta 
(B.1.351)

Headache
Fatigue

Cognitive 
issues

Dizziness 
(rare)

Nasal congestion
Sore throat

Late 2020 (first 
detected in South 
Africa)

Pfizer vaccine showed reduced 
neutralization. Covaxin 
demonstrated significant 
neutralization.

Gamma (P.1) Anxiety

Depression
Headache

Dizziness Prolonged loss of 
taste/smell
Nasal congestion

Late 2020 (first 
detected in 
travelers from 
Brazil in Japan)

Reduced neutralization observed 
with Pfizer-BioNTech and 
Moderna vaccines.

Delta 
(B.1.617.2)

Severe 
headache

Confusion

Dizziness 
(rare)

Severe sore throat
Ear pain

Reduced loss of smell

Late 2021 (first 
detected in India)

Pfizer and Moderna vaccines 
showed reduced immune 
response due to L452R 
mutation. Improved 
transmissibility linked to spike 
protein mutations.

Omicron 
(BA.1, BA.2, 
BA.4, BA.5)

Mental 
fatigue

Brain fog

Dizziness 
(less 
common)

Predominant sore throat

Less frequent loss of 
taste/smell

Late 2021 (first 
detected in 
multiple regions)

Vaccines and prior immunity 
appear to mitigate the severe 
effects. Less anosmia due to 
differences. In cellular tropism 
and reduced inflammatory 
dysregulation.

Omicron 
(XBB, BQ.1)

Headache

Brain fog
Peripheral 
neuropathy

Dizziness 
(less 
common)

Dominant nasal 
symptoms
Dry cough

Late 2022 (first 
detected in 
multiple regions)

Updated booster vaccines were 
introduced in mid-2022 to target 
Omicron subvariants.

being B.1.617.2 (also known as Delta). It carries characteristic mutations in the spike protein, including 
D111D (a synonymous substitution), G142D, L452R, E484Q, D614G, and P681R. Three concerning 
mutations in the RBD—L452R, E484Q, and P681R—are located at the furin cleavage site [25]. These 
mutations may increase binding with ACE2, as seen in other variants with similar mutations, and enhance 
the cleavage between S1 and S2, improving transmissibility. The L452R mutation has also been shown to 
reduce the immune response to Pfizer-BioNTech and Moderna vaccines compared to the original strain 
[26]. The Omicron variant appears to be highly transmissible, exhibiting numerous substitutions in the 
spike glycoprotein, and emerged at a time when much of the global population had received the SARS-CoV-
2 vaccine. It is possible that the characteristics of the Omicron variant, or previously acquired immunity, 
either from prior infection or vaccination, may explain the lower incidence of olfactory disturbances. 
Omicron might lead to less anosmia due to differences in cellular tropism, mechanisms of cell entry, and 
producing less inflammatory dysregulation [27]. It is important to note that not all variants are associated 
with the persistence of symptoms months after the initial infection (Table 1). Our study aimed to assess, 
over a period of 24 months following hospitalization, the persistence, reduction, or disappearance of 
clinical symptoms related to neurological and otolaryngological conditions. The sample of patients, who 
were interviewed by phone, was focused on identifying, based on their own subjective reports, the 
presence of the following symptoms: anosmia, ageusia, dizziness, sudden hearing loss (in the 
otolaryngological domain); memory deficits, attention problems, depressive symptoms, and concentration 
issues (in the neurological domain); as well as fatigue or muscle weakness (as systemic symptoms). The 
questionnaire revealed that 18.3% of women reported neuropsychiatric issues, including memory deficits, 
depression, anxiety, and concentration problems, 24 months post-infection. In comparison, only 5.7% of 
men experienced cognitive changes. Unlike earlier variants, Omicron-related otolaryngological symptoms-
anosmia, ageusia, hearing loss, and dizziness-largely resolved, with only 4.5% reporting persistent issues. 
This percentage aligns with the data in the literature regarding the persistence of neurological symptoms in 
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long COVID, which is typically around 20% [28]. Notably, in the male cohort, these values correspond to 
5.7%. Moving forward, it will be important to evaluate the potential presence of co-factors that may 
contribute to a higher incidence of neurological symptoms in the female population compared to the male 
population. Several reasons have been reported in the literature to explain the differences in the incidence 
of neurological symptoms between men and women. However, when considering COVID-19 specifically, we 
must also take into account many other factors, and this will be one of the future objectives of our work. It 
is also noteworthy that the otolaryngological symptoms have almost completely disappeared, suggesting 
that the Omicron variant, as highlighted by several molecular studies, likely had a reduced impact on the 
pathophysiological effects on the neurosensory systems compared to previous variants. It is important to 
remember that this evaluation could also factor in vaccination, as the Omicron variant, unlike previous 
variants, was the first one to emerge following the global mass vaccination campaign against SARS-CoV-2. 
Epidemiological studies are still ongoing to assess the effectiveness of vaccines, both in terms of infectious 
and immune responses. In addition, although it is challenging to estimate the persistence of symptoms over 
time across different ethnic groups, it is notable that the Caucasian population appears to be the most 
affected by long-term symptoms. One possible explanation for this could be that Caucasians more 
frequently carry a variant of the ACE2 expressed in the olfactory epithelium [29, 30]. The persistence of 
COVID-19 symptoms, commonly referred to as long COVID, is thought to be driven by several hypotheses.

For example, some studies suggest potential biomarkers associated with the persistence of symptoms 
[31]. Soluble CD163 (sCD163) (the soluble form of CD163, a specific receptor for monocytes/macrophages 
that binds hemoglobin-haptoglobin complexes) is likely released in the central nervous system (CNS) by 
activated macrophages and microglia through complex immunomodulatory mechanisms in the 
microenvironment [32]. It has been suggested that this biomarker could be used to assess the risk of 
disease progression, as increased plasma levels of sCD163 have been observed upon admission in COVID-
19 patients, particularly those who develop acute respiratory distress syndrome (ARDS). The potential role 
of sCD163 as a biomarker of CNS damage is of interest. It is known that sCD163 is upregulated during the 
pro-inflammatory response, and the release of matrix metalloproteinases (MMPs) plays a key role in 
driving this process. A positive correlation has been observed between levels of CSF (cerebrospinal fluid) 
sCD163 and MMP-9, suggesting that elevated levels of sCD163 and MMP-9 in the CSF may contribute to the 
infiltration of monocytes into the CSF in COVID-19 patients. Plasma levels of sCD163 were found to be 
elevated compared to those seen in cognitively normal individuals or those with mild, asymptomatic 
neurocognitive damage [33]. Additionally, in neurodegenerative diseases like Parkinson’s disease, sCD163 
is considered a potential biomarker related to cognition, highlighting the role of monocytes in both 
peripheral and brain immune responses [34]. Regardless of the underlying mechanisms causing symptom 
persistence, vaccination has proven essential not only in reducing the transmission of SARS-CoV-2 but also 
in protecting the population from the long-term effects of the infection. Recent studies indicate that 
vaccinated individuals are significantly less likely to develop long COVID compared to those who are 
unvaccinated. Moreover, among those who contract the infection despite being vaccinated, persistent 
symptoms tend to be less severe and of shorter duration. Therefore, vaccination is a crucial tool in 
preventing both acute COVID-19 infection and its potential long-term consequences. Emerging evidence 
suggests that COVID-19 vaccines may not only efficiently reduce the risk of developing severe or critical 
COVID-19, but they could also play a role in preventing long COVID. A recent meta-analysis published by 
Notarte et al. [35], which included a total of 11 peer-reviewed studies and 6 preprints (up to June 20, 2022) 
with 17,256,654 participants, concluded that COVID-19 vaccination was globally associated with a lower 
risk of long COVID. In particular, two doses of the vaccine showed more favorable results compared to a 
single dose. Specifically, among the 11 studies that examined changes in long COVID symptoms following 
vaccination, 7 concluded that long COVID symptoms could improve after vaccination against COVID-19. 
Moreover, compared to vaccinated individuals who received at least one booster dose, unvaccinated 
individuals had a 40% higher risk of developing long COVID (OR: 1.41; 95% CI: 1.05–1.91).

Although, as we have repeatedly emphasized in this discussion, vaccines have played a key role in 
limiting the spread of the virus and improving the prognosis of patients with COVID-19, it is also important 
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to consider the safety profile of these drugs. In particular, some studies have highlighted the occurrence of 
psychiatric adverse events (AEs) following COVID-19 vaccination, raising questions about the impact of the 
vaccine not only on the immune system but also on neurological and psychological levels.

Symptoms such as anxiety, insomnia, mood disturbances, and, in rare cases, psychotic episodes have 
sparked scientific debate about the potential link between vaccination and side effects on the CNS. While 
the exact mechanism is not yet fully understood, it is suggested that the inflammatory response triggered 
by the vaccine could affect neurotransmitters and brain circuits involved in mood and stress regulation. 
Additionally, the pandemic context itself, marked by high levels of psychological stress, may have 
contributed to exacerbating or making these symptoms more noticeable.

However, it’s important to view these findings in the broader context of the overall benefits of 
vaccination. That being said, research should continue to explore these AEs, aiming to better understand 
their causes, identify any risk factors, and improve how we manage patients who are affected by them.

The study examined the psychiatric AEs following COVID-19 vaccination in a large cohort from Seoul, 
South Korea. Over 2 million participants were included, divided into two groups: vaccinated and 
unvaccinated [36].

The results showed an increased incidence of depression, anxiety, dissociative, stress-related, and 
somatoform disorders, sleep and sexual disorders in the vaccinated group compared to the unvaccinated 
group. However, vaccination was associated with a lower risk of schizophrenia and bipolar disorder. 
Statistical analyses revealed that the risk increased for depression (HR = 1.683), anxiety and related 
disorders (HR = 1.439), sleep disorders (HR = 1.934), while it decreased for schizophrenia (HR = 0.231) and 
bipolar disorder (HR = 0.672) [36].

In conclusion, while our retrospective study on the persistence of post-COVID symptoms at 24 months 
has provided valuable insights, there are some limitations that affect the interpretation of the results.

Limitations of the study

One of the main limitations of this study is the sample size, which, with only 112 patients, may affect the 
generalizability of the results. A small number of participants limits the ability to apply the findings to a 
broader population, highlighting the need for a larger sample to obtain more robust and representative 
data.

In addition to the sample size, another limitation is the method of data collection, which was carried 
out through telephone interviews. Telephone interviews represent a practical and accessible methodology, 
particularly useful in longitudinal studies where long-term follow-up can be challenging. This approach 
allows for efficient patient outreach, reducing costs and dropout rates compared to more invasive methods 
or those requiring in-person visits. Moreover, it enables the collection of subjective information about 
persistent symptoms directly from the patients, without the need for additional clinical exams or diagnostic 
tests.

However, a key limitation of this approach is that it relies on self-reported data, which can be 
influenced by memory bias and personal interpretation. Since our study looked at symptoms up to 
24 months after COVID-19 infection, some participants might have trouble recalling the exact duration, 
frequency, or severity of their symptoms. This is known as recall bias, and it could lead to either an 
overestimation or an underestimation of how long neurological symptoms actually persisted.

Moreover, the way symptoms are perceived can vary from person to person, influenced by factors like 
emotional state, mental health, and overall well-being. For instance, symptoms like brain fog, fatigue, or 
sleep issues might feel different to each individual and could be reported unevenly. Without objective tests 
(like neurocognitive assessments or other diagnostic tools), our study relies solely on how patients 
perceive their symptoms, which could be a limitation.
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Finally, the lack of direct clinical evaluation limits the ability to confirm or quantify certain symptoms, 
especially those of a neurological nature. While the telephone interviews were conducted using structured 
and standardized questions to minimize these biases, there remains the risk of variability in the responses, 
which could affect the results.

Implications for the future studies

To improve upon the limitations of this study, future research will aim to increase the sample size in order 
to make the results more representative and statistically reliable. A larger sample will allow for a deeper 
look at how gender, age, and comorbidities may affect the persistence of post-COVID symptoms, giving us a 
fuller picture of how these factors contribute to long-term health outcomes.

In addition, it will be crucial to complement the telephone interviews with more objective clinical 
assessments, such as neuropsychological tests or diagnostic exams, to better understand and confirm the 
severity of neurological symptoms. Using a mixed-methods approach, which combines self-reported data 
with standardized clinical measurements, could reduce the impact of personal biases and provide more 
accurate results.

To minimize memory bias, future studies might include more frequent follow-ups and digital tools like 
electronic symptom diaries. This would enable researchers to track symptom progression in real-time, 
improving the reliability of the data. Along with regular follow-ups, there’s a growing interest in identifying 
biomarkers. It would be beneficial to explore non-invasive or minimally invasive biomarkers, such as those 
that can be measured from routine blood tests. These biomarkers could serve as useful indicators of the 
patients’ overall health and the severity of the disease.

One study found that patients with long COVID had higher levels of inflammatory biomarkers long after 
the initial infection. Our own research also revealed significant links between certain biomarkers and long 
COVID symptoms. For example, patients with long COVID showed higher levels of IL-6 (30%), CRP (15%), 
and TNF-α (15%) compared to those who had fully recovered, along with lower hemoglobin levels (10%). 
Among the biomarkers analyzed, cytokines/chemokines and biochemical markers made up 23.9% and 
39.1%, respectively. In particular, 44.2% of the biomarkers were cytokines/chemokines, while 20.9% were 
vascular markers [37], suggesting that these biomarkers could be important indicators of long COVID 
syndrome.

These approaches would help solidify our understanding of the persistence of post-COVID-19 
symptoms and long-term cognitive dysfunction [38] and pave the way for more focused strategies to 
support the long-term care of these patients. In this direction, it is clear that new explorations on the 
therapeutic aspects of ENT disorders in long COVID-19 patients would be useful [39]. To date, active clinical 
trials on the medical therapy of anosmia, focusing on the efficacy of neuro-protective and anti-inflammatory 
agents as palmitoylethanolamide (PEA), luteolin (LUT), and cerebrolysin [39]. The protective effects on 
olfactory epithelium are restorative on post-COVID-19 anosmia, and also biologics, olfactory training, and 
electrical stimulation are suggested methods for the treatments of olfactory impairment in post-COVID-19 
patients. The potential therapeutic approaches, pharmacological, biological, molecular, and genetic, are 
under investigations [39].
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