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Abstract
Aim: Lung cancer is the leading cause of cancer-related deaths worldwide. Non-small cell lung cancer 
(NSCLC) is the most common subtype. Despite recent advancements in diagnostics and therapies, only a 
small percentage of patients benefit from immunotherapies. This underscores the urgent need to identify 
prognostic biomarkers for accurately assessing outcomes and providing treatment recommendations for 
NSCLC patients. Single-cell RNA sequencing (scRNA-seq) has revealed the heterogeneity of tumor-
associated macrophages. Macrophages consist of M0, M1, and M2 subsets. M1 macrophages are often 
associated with improved clinical outcomes in various malignancies. However, there are no systematic 
studies on risk biomarkers for prognosticating NSCLC.
Methods: CIBERSORT was used to calculate the macrophage subset infiltration percentage in bulk RNA-seq 
data from TCGA and GEO. The M1-related module was identified using the WGCNA algorithm. Potential M1 
macrophage prognosis-associated genes were defined as the overlapping genes between marker genes in 
the M1 subpopulation from scRNA-seq data and prognosis-associated genes in M1 infiltrating cells.
Results: Four risk genes (ADAM19, ICAM3, WIPF1, and LAP3) were identified through LASSO and 
multivariate Cox regression analysis. Forest plots demonstrated that the scoring model was an independent 
risk factor. A nomogram was provided to predict the prognosis of NSCLC patients. Finally, we validated the 
four risk genes at the protein expression levels and for copy number variations.
Conclusions: In summary, our studies identified four risk genes related to M1 macrophages and presented 
a risk-scoring system to predict the outcomes of patients with NSCLC by integrating bulk and single-cell 
data.
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Introduction
With an estimated 1.8 million deaths annually from lung cancer, it is the most common type of cancer [1]. 
Regardless of the type, the 5-year survival rate for all lung cancer patients is 22%. Non-small cell lung 
cancer (NSCLC) has a 26% 5-year survival rate, compared to a 7% rate for SCLC [2–4]. Lung 
adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) are the most prevalent histological 
subtypes of NSCLC, accounting for about 85% of cases [5]. With the rapid development of precision 
medicine, new therapeutic approaches, particularly immunotherapies, have been suggested to improve 
clinical outcomes for NSCLC patients [6]. However, only a subset of patients benefit from immunotherapies, 
underscoring the urgent need to identify suitable biomarkers for accurate prognostic prediction.

In recent years, macrophages have emerged as novel therapeutic targets for cancer treatment. Tumor-
associated macrophages (TAMs) are particularly crucial targets due to their influence on the tumor 
microenvironment (TME), tumor immunity, and response to immunotherapy [7]. Solid tumors and 
metastasis are prominent contributors to fatalities in NSCLC [8]. The TME plays an essential role in tumor 
cells’ growth and metastatic progression, which interact with immune cells [8, 9]. Leader et al. [10] 
highlighted that the composition of immune cells correlated with tumor mutational burden (TMB) serves as 
a crucial indicator of immunotherapy response in NSCLC, based on analysis of 35 matched single-cell RNA 
sequencing (scRNA-seq) samples. Macrophages exist in various states including non-activated M0, pro-
inflammatory (M1), and anti-inflammatory (M2) consist of macrophages [11]. For many primary solid 
tumors such as ovarian cancer, a high M2/M1 ratio correlates with poor prognosis [8]. Zhao et al. [12] 
demonstrated that miR-934 promotes M1 depolarization, thereby facilitating colorectal cancer liver 
metastasis. In this study, we focused on M1 macrophages due to their high expression of major 
histocompatibility complex molecules and their effectiveness in killing cancer cells [13].

Weighted gene co-expression network analysis (WGCNA) is a widely used algorithm for clustering 
genes to identify modules highly correlated with clinical characteristics [14]. WGCNA has diverse 
applications, including discovering disease-associated gene modules, distinguishing gene sets specific to 
disease subtypes, and identifying gene lists involved in biological processes [15–20]. For instance, ITGAX, 
CCL14, ADHFE1, and HOXB13 were proposed as early molecular biomarkers for diagnosing gastric cancer 
by analyzing expression patterns using WGCNA [16]. Niemira et al. [15] used WGCNA to differentiate gene 
modules and functional pathways between LUAD and LUSC by investigating differentially expressed genes 
(DEGs) from bulk transcriptomic data. Similarly, essential gene modules and key genes were identified in 
breast cancer through WGCNA analysis [20]. In this study, we constructed a scale-free network using 
WGCNA to identify a group of co-expressed genes related to M1 macrophage in NSCLC patients. This 
approach is based on the hypothesis that co-expressed genes within the same module share comparable 
biological properties [21, 22].

Single-cell technology represents a sophisticated, powerful, and up-to-date technology for addressing 
issues of heterogeneity [23]. Until recently, researchers identified diagnostic and therapeutic molecular 
biomarkers using traditional bulk RNA-seq technology, which detected DEGs at an “average” status, 
requiring large sample sizes. The challenge lies in identifying specific cell types involved in cancer 
progression and development, particularly with scarce and challenging-to-obtain samples. Nowadays, 
single-cell genomics enables examination of patient intra-diversity at the resolution of individual cells [24]. 
Analysis of extensive scRNA-seq data from cancer, para-cancerous tissues, and peripheral blood samples is 
gradually illuminating the TME and disease mechanisms [25–27]. Hence, we now possess the capability to 
identify key marker genes in NSCLC patients using readily accessible scRNA-seq data.

The combined research of bulk RNA-seq and scRNA-seq is widely applied in cancer-related studies to 
better understand cancer heterogeneity and provide insights for precision medicine. For example, Zheng et 
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al. [28] identified a cancer-associated fibroblast signature consisting of nine genes, which serves as a robust 
and reliable prognostic biomarker for colorectal cancer. Wang et al. [29] developed a machine-learning 
model by integrating scRNA-seq with bulk RNA-seq data, revealing that high-risk cohorts had lower 
immune infiltration and poorer prognosis in ovarian cancer. Bao et al. [30] suggested that a TAM-associated 
signature could predict immune response and aggressiveness in triple-negative breast cancer. Twenty-
seven natural killer (NK) cell-associated genes were screened to develop a risk score model for prostate 
cancer, demonstrating reasonable predictive performance for patient outcomes [31]. However, the 
development of an M1-targeting algorithm for identifying prognostic risk-scoring systems in NSCLC has yet 
to be achieved through the integration of bulk and single-cell technologies.

In the current study, we constructed a classification system based on the percentage of M1 macrophage 
immune infiltration, concluding that high M1 infiltration is associated with a better prognosis compared to 
low M1 infiltration. A gene module related to the M1 trait was identified using WGCNA analysis. By 
integrating scRNA-seq data, we identified maker genes from the M1 subcluster. Eleven risk genes that play 
important roles in NSCLC through M1 immune cells were identified. After removing highly correlated risk 
genes using the LASSO algorithm, a risk score model was generated for the prognosis of NSCLC patients 
based on four M1 macrophage-related genes (ADAM19, ICAM3, WIPF1, and LAP3). Finally, these four genes 
were validated using immunohistochemistry (IHC) results from the Human Protein Altas (HPA) database. 
Our results provided a prognostic signature, identified potential therapeutic targets, offered a fresh 
perspective for understanding the mechanisms of NSCLC, and provided medical recommendations for 
NSCLC patients.

Materials and methods
Data collection and preprocessing

In total, four bulk datasets and one single-cell dataset for NSCLC were collected and combined in this 
research.

The TCGAbiolinks R package (version: 2.25.0) was used to download the clinical characteristics and 
gene expression data of LUAD and LUSC patients from the TCGA database [32]. We retained only the 
expression data that had matching clinical traits. GSE13213 and GSE31210 are two external datasets in this 
study. The GSE13213 dataset, based on the Agilent platform, contains gene expression microarray profiles 
and clinical information for 117 patients with LUAD [33]. The GSE31210 dataset, based on the Affymetrix 
platform, contains gene expression microarray profiles and clinical information for 226 LUAD samples 
included in our study [34, 35]. The removeBatchEffect() function in the limma R package (version: 3.52.1) 
was used to remove the batch effect among the four bulk RNA-seq datasets (TCGA-LUAD, TCGA-LUSC, 
GSE13213, and GSE31210).

There are 190 single-cell datasets, comprising 6,297,320 cells, available from TISCH2 (Tumor Immune 
Single-Cell Hub,(http://tisch.comp-genomics.org/) [36].

We processed data from the study with accession number GSE117570, which includes 11,485 cells 
from four patients [37, 38].

Macrophage subclusters infiltration analysis

To assess the proportions of M0, M1, and M2 macrophage subclasses in NSCLC samples from four bulk 
datasets—two TCGA RNA-seq datasets and two external GEO microarray datasets, the CIBERSORTx R tool 
(https://cibersortx.stanford.edu/) was used to estimate their abundance. This tool, designed and developed 
by Prof. Alizadeh and Prof. Newman, is a popular method for providing the percentages of 22 different 
immune cell types by analyzing gene expression profile data [39, 40].

Samples were divided into two groups based on the median immune score of each macrophage 
subcluster type as follows (Algorithm 1).

http://tisch.comp-genomics.org/
http://tisch.comp-genomics.org/
https://cibersortx.stanford.edu/
https://cibersortx.stanford.edu/
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Algorithm 1. Samples grouping

WGCNA analysis

First, we filtered the genes based on the following criteria: genes in the top 75% of the median absolute 
deviation (MAD) and with MAD greater than 0.01. We removed genes that exhibited minimal variation 
across all samples because they were considered to have little effect on distinguishing between high- and 
low-M1 macrophage patient groups. Then, samples were screened to remove outliers. Finally, WGCNA was 
performed using the WGCNA R package (version 1.71) to identify gene modules most associated with M1 
macrophage after dividing patients into high- or low-M1 macrophage content groups based on the median 
M1 infiltration score [14].

The pickSoftThreshold() function of WGCNA was used to determine the soft power value (beta). The 
next step was to use hierarchical clustering to find gene modules, with a minimum of 100 genes per module 
(minModuleSize = 100). Subsequently, the relationships between modules and sample characteristics were 
analyzed. Finally, the genes in the most relevant module were identified and defined as M1-related genes.

scRNA-seq analysis

The R package Seurat (version: 4.1.1) was used to conduct scRNA-seq data analysis [41–44]. Genes detected 
in fewer than three cells and cells with fewer than 200 detectable genes were disregarded, and the 
proportion of mitochondrial genes was restricted to under 30%. The doubletFinder_v3() function of the 
DoubleFinder R package (version: 2.0.3) was used to identify and remove doublet cells in the scRNA-seq 
data [45]. The LogNormalize method was selected for normalizing data using the NormalizeData() function. 
We analyzed the four scRNA-seq datasets from four patients separately and then merged them.

The criteria for removing principal components (PCs) were as followings: (1) a cumulative 
contribution rate greater than 90%; (2) each PC contributing less than 5% to the variance; (3) a difference 
of less than 0.1% between two consecutive PCs. The resolution was determined using the clustree R 
package (version: 0.5.0). Increasing the resolution resulted in more interlacing of clusters, indicating that 
our classification was becoming excessive.

Annotation was performed using the SingleR (version: 1.10.0) and celldex (version: 1.6.0) R packages 
[46]. The HumanPrimaryCellAtlasData() dataset served as the reference. tSNE was used for dimensionality 
reduction. Marker genes in subpopulations were identified using the FindAllMarkers() function in the 
Seurat R package with the Wilcox test. Cutoff values were set at log fold change threshold 
(logfc.threshold) = 0.25 and minimum percent (min.pct) = 0.25. Finally, only positively expressed genes 
were retained (only.pos = TRUE).

A similar protocol was used for recluster analysis of the macrophage subpopulation. The difference 
was in the annotation process, where cell types were assigned based on a combination of marker genes and 
functional analysis results, rather than auto-annotation. To assess the precision of our reclustering system, 
we utilized AUCell (version: 1.18.1) in our study [47]. AUCell enables the identification of cells with active, 
specific gene expression signatures. RUNX3, ADAM19, LIMD2, PRKCB, CYTIP, FNBP1, ICAM3, WIPF1, TAP1, 
PSMB9, and LAP3 were defined as M1 marker genes. Additionally, the topGO R package (version: 2.48.0) 
was employed to explore the functional characteristics within each cluster.



Explor Med. 2024;5:750–73 | https://doi.org/10.37349/emed.2024.00254 Page 754

Identification of M1-related risk genes

The M1-related risk genes were defined as a class of group genes that do not exhibit linear relationships. 
They are overlapping genes between the first gene list from the M1-related gene co-expression module and 
the second gene list from marker genes in the M1 subcluster. First, we intersected the two gene lists and 
then removed co-linear genes based on LASSO analysis. LASSO analysis was performed using the glmnet 
(version: 4.1.4) and survival (version: 3.4.0) R packages to avoid overfitting problems.

Construction of the prognostic signature

By concentrating on significant M1-related macrophage risk genes, identified from the overlapping genes 
between the pink module from WGCNA and maker genes from the M1 subcluster, we created a prognosis-
associated signature for NSCLC patients. Overall survival (OS) was the outcome of this study, and 
prognostic M1-related risk genes were examined using a multivariate Cox regression model on the training 
dataset. Genes were considered candidate prognostic genes if they had a p-value < 0.1 in the regression 
model.

The mathematical formula used to calculate the M1-related prognostic signature was:

where βi represents the coefficient value from Cox regression analysis, expi represents the expression levels 
for gene i, and n represents the number of significant risk genes.

The schematic workflow for designing and validating the prognostic signature in NSCLC is shown in 
Figure 1.

Univariate and multivariate Cox regression analysis

Two R packages, survival (version: 3.4.0) and survminer (version: 0.4.9), were used to determine the best 
cutoff of risk scores. NSCLC patients were then divided into high- and low-risk groups based on the optimal 
risk score cutoff.

Univariate and multivariate Cox regression analyses were conducted to evaluate whether age, gender, 
stage, and risk score are independent risk factors. Two R packages, survival (version: 3.4.0) and forestplot 
(version: 2.0.1), were used for assessment and visualization. Risk factors with p-value < 0.05 and HR > 1 
were regarded as significant independent risk factors for poor prognosis in NSCLC patients.

Protein expression validation

The protein expression levels of risk genes in the risk score model were obtained and compared using the 
HPAanalyze R package (version: 1.14.0) [48]. HPAanalyze provides an interface for accessing and 
visualizing data from the HPA database (https://www.proteinatlas.org/). HPA is an open-source website 
for downloading and visualizing human protein data in cell lines, normal tissues, and tumors [49–55]. The 
protein expression profiles of risk genes in lung cancer and normal lung tissue were calculated and 
visualized separately using the hpaVisPatho() and hpaVisTissue() functions from quantified IHC staining 
results. A heatmap displaying the expression of relevant proteins in low, medium, and high levels was 
created.

Functional enrichment validation

To comprehensively validate the functional differences between high- and low-risk score groups, we 
included three popular functional enrichment analysis methods in our study: Metascape [56], GSEA, and 
ssGSEA.

DEGs between high- and low-risk score groups were identified using the limma R package (version: 
3.52.1) [57]. Genes with |Fold change| > 1.5 and p-value < 0.05 were treated as significant DEGs. Up-
regulated and down-regulated genes in the high-risk score group were separately uploaded to Metascape 

https://www.proteinatlas.org/
https://www.proteinatlas.org/
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Figure 1. The schematic workflow of a comprehensive study on constructing and evaluating a risk score model based 
on M1 macrophage-related genes for calculating prognostic risk in NSCLC patients. Step 1. Four bulk RNA-seq and one 
scRNA-seq datasets were collected for this study. Step 2. Two M1-related gene lists were identified separately using WGCNA 
and maker gene screening algorithms. Step 3. The candidate M1-related factor genes were defined as the overlap between 
module genes and marker genes in the M1 sub-population. These factor genes were then filtered using LASSO regression 
analysis. Step 4. A risk score model was constructed using Cox regression analysis and validated by protein and copy number 
variation (CNV) levels

(https://metascape.org/gp/index.html#/main/step1). Enriched terms were downloaded in a bar graph 
summary format.

KEGG pathways gene sets were downloaded from the MSigDB database (https://www.gsea-msigdb.
org/gsea/msigdb) [58–60]. Enrichment analysis and figure plotting were performed using the GSEA() and 
gseaplot2() functions from the clusterProfiler (version: 4.4.4) and enrichplot (version: 1.16.1) R packages.

Cancer hallmark gene sets were collected from the MSigDB database. The gsva() function in GSVA 
(version: 1.44.2) and GSEABase (version: 1.58.0) packages were used to calculate the enrichment score of 
each gene set in each sample using the ssGSEA algorithm . The fortify_mantel() function in the ggcor R 
package (version: 0.9.7) was employed to visualize the relationship between enrich score and risk score.

https://metascape.org/gp/index.html#/main/step1
https://metascape.org/gp/index.html#/main/step1
https://metascape.org/gp/index.html#/main/step1
https://www.gsea-msigdb.org/gsea/msigdb
https://www.gsea-msigdb.org/gsea/msigdb
https://www.gsea-msigdb.org/gsea/msigdb
https://www.gsea-msigdb.org/gsea/msigdb
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Other bioinformatics and statistical analysis

This study utilized R language (version 4.2.2) for bioinformatics and statistical analysis. The significant 
cutoff for p-values was set at 0.05. Kaplan-Meier analysis was performed to assess survival differences 
between patient groups. Additionally, a t-test was employed to analyze gene scores among M0, M1, and M2 
groups. The nomogram illustrating the relationship between the sum of risk factors scores and survival 
time was generated using the regplot R package (version: 1.1). Genomic variation analysis included the 
collection of copy number variation (CNV) data in NSCLC from the cBioPortal database (https://
www.cbioportal.org/). The frequencies of CNV changes for risk genes were shown by the ggplot2 R package 
(version: 3.3.6). The VennDiagram R package (version: 1.7.3) was utilized to compute and visually 
represent overlapping genes between the M1 characteristics-related gene list and the M1 marker gene list.

Results
M0, M1, and M2 infiltration percentage and survival analysis

In total, the GSE13213 dataset contained 117 samples and 19,412 genes, while the GSE31210 dataset 
included 226 samples and 20,857 genes. The TCGA-LUAD dataset comprised 596 samples and 59,427 
genes, and the TCGA-LUSC dataset had 551 samples and 59,427 genes. These four datasets were integrated 
to mitigate batch effects (Figure S1). Finally, after removing samples without clinical information and 
excluding normal samples, we obtained data from 1,475 samples representing 1,432 patients and 15,596 
genes for further prognostic analysis.

The expression profile was input into the CIBERSORT() function of the CIBERSORTx R tool (https://
cibersortx.stanford.edu/). This allowed the calculation of the immune score for each cell type in each 
sample. Subsequently, samples were grouped based on the median immune score for M0, M1, and M2 
categories individually. The survival curve in the M1 classification system exhibited the most significant 
differences between high and low immune score groups compared to other macrophage subclusters 
(Figure 2A–C). Therefore, our focus shifted to identifying M1-related risk genes for subsequent prognostic 
analysis in NSCLC.

Identification of M1 macrophage-related genes by bulk dataset

After filtering genes based on the cutoff of MAD across all samples, 11,697 genes were retained. Outliers 
were removed, resulting in 1,773 samples. As visualized in Figure 2D, a soft power beta value of 3 was 
selected as optimal. Setting the minimum module size to 100 (Table 1) yielded 12 modules; genes in the 
grey module, which could not be classified into color modules, were ignored (Figure 2E). The pink module 
showed the strongest correlation with the M1 trait and no significant association with other modules 
(Figure 2F, G). Therefore, 222 genes in the pink module were identified and defined as M1 macrophage-
related genes for NSCLC patients.

Identification of M1 macrophage-related marker genes by scRNA-seq

The identification of M1 macrophage-related marker genes from scRNA-seq data in NSCLC patients involves 
two main steps. First, macrophage subpopulations are isolated from all single cells within NSCLC patients. 
Second, M1 macrophage-related marker genes are identified.

After filtering doublets, genes, and samples, we obtained the following datasets: 6,610 genes across 
1,788 cells for the first patient, 9,317 genes across 1,250 cells for the second patient, 3,205 genes across, 
319 cells for the third patient, and 7,454 features across 1,364 cells for the last patient (Figure S2A–C). The 
optimal number of PCs and resolution were set at 14 and 0.6, respectively (Figure S2D–G). Four Seurat 
objects were normalized and integrated, resulting in 21 clusters (Figure 3A, Figure S2H). Additionally, 
seven main cell subpopulations were identified through SingleR annotation: epithelial cells (1,851 cells), 
monocyte (957 cells), NK cells (676 cells), macrophage (980 cells), B cells (170 cells), fibroblasts (52 cells), 
and endothelial cells (71 cells), as shown in Figure 3B. The tSNE plot depicted the distribution of immune 
cells in the scRNA-seq data (Figure 3C). The classification of immune cells into various subtypes (e.g., T 
cells, B cells, macrophages) is crucial for understanding the composition of immune cell populations in 

https://www.cbioportal.org/
https://www.cbioportal.org/
https://cibersortx.stanford.edu/
https://cibersortx.stanford.edu/
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Figure 2. The survival analysis of M0, M1, and M2 macrophage subclasses and identification of M1 macrophage genes 
in NSCLC. Kaplan-Meier survival curves of patients with different macrophage infiltration subclasses: (A) M0 macrophage. (B) 
M1 macrophage. (C) M2 macrophage. (D) Selection of the soft threshold to achieve a scale-free topology in the network. Left 
plot: scale-free topology fit index as a function of the soft-thresholding power. Right plot: mean connectivity as a function of the 
soft-thresholding power. (E) Hierarchical clustering of the TOM matrix and visualization of gene module hierarch, excluding 
genes in the grey module that cannot be classified into color modules. (F) Visualization of the module-trait relationship to identify 
which module is most correlated with M1 macrophage characteristics. (G) Clustering heatmap depicting the relationship 
between gene modules and traits, highlighting the significant correlation of the pink module with M1 macrophage traits
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Table 1. The number of genes in WGCNA modules

Module The number of genes

Black 234
Blue 1,363
Brown 1,179
Green 873
Greenyellow 141
Grey 2,950
Magenta 197
Pink 222
Purple 159
Red 532
Turquoise 2,880
Yellow 967

samples. This classification is particularly important in studying diseases such as cancer, where the immune 
response plays a critical role. By categorizing immune cells, we gain insights into how the immune system is 
responding. Single-cell analysis enables the identification of rare or novel immune cell subpopulations that 
may significantly impact disease progression or treatment response. Furthermore, immune cell 
classification provides crucial context for interpreting other study results. For instance, variations in 
immune cell composition may correlate with clinical outcomes or other molecular findings. To validate our 
classification approach, a bubble plot featuring three marker genes per cell type was generated (Figure 3D). 
The distribution of each cell type was visualized in a stacked percentage bar plot (Figure 3E), revealing 
similar proportions across patients. Additionally, enriched functional pathways associated with different 
cell types were illustrated in Figure S3A–B (GO-MF and KEGG).

The macrophage subpopulation was isolated from all single cells for further analysis (Figure 4A). We 
determined the optimal number of PCs and resolution to be 11 and 1.6, respectively. Figure 4B depicts the 
cell distribution of M0, M1, and M2 using tSNE visualization. Each cell’s AUCell score was calculated using 
the AUCell R package, with cells from the M1 cluster exhibiting higher scores than those from the other 
clusters (Figure 4C, D). Figure 4E illustrates the distribution of individual heterogeneity within cell clusters. 
Additionally, six marker genes and the top six DEGs are presented in Figure 4F. Enriched pathways for M0, 
M1, and M2 are detailed in Figure S3C–D, encompassing GO-MF and KEGG pathways. These findings 
collectively affirm the reliability of our cell type classification system.

Construction of the prognostic model by M1 macrophage-related risk genes

Eleven M1 macrophage-related risk genes were identified by intersecting the genes from the M1 trait-
related and M1 marker gene lists (Figure 5A). LASSO regression analysis was subsequently applied to these 
11 genes (RUNX3, ADAM19, LIMD2, PRKCB, CYTIP, FNBP1, ICAM3, WIPF1, TAP1, PSMB9, and LAP3) to 
mitigate model overfitting issues (Figures 5B, C). After eliminating genes with collinear associations, 
namely ADAM19, ICAM3, WIPF1, and LAP3, four risk genes remained significant with a p-value < 0.1. Table 2 
summarizes the results from the Cox regression model. The risk score was defined based on the outcomes 
of the Cox regression analysis.
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Figure 3. scRNA-seq analysis of NSCLC and identification of macrophage-related marker genes. (A) tSNE plot depicting 
the integration of 4,721 cells from four NSCLC patients. (B) tSNE plot displaying the main seven cell clusters identified in 
NSCLC samples based on 10× data. (C) tSNE plot illustrating the classification of cell clusters into immune and non-immune 
cells. (D) The bubble plot of representative three maker genes for seven cell clusters in NSCLC patients. (E) Stacked bar plot 
showing the proportion of seven cell clusters across the four NSCLC patients

Subsequently, the risk score for each NSCLC patient was computed using the formula above. The risk 
plot demonstrated a correlation between risk score and gene expression levels, highlighting that elevated 
expression levels of ADAM19 and LAP3 are linked to poor prognosis in NSCLC patients, whereas lower 
expression levels of ICAM3 and WIPF1 are associated with favorable prognosis (Figure 5D). Figure 5E 
further illustrates a significant difference in survival time between low- and high-risk score groups among 
NSCLC patients.
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Figure 4. Recluster analysis of macrophage cell types in NSCLC patients. (A) tSNE plot depicting labeled macrophage cell 
clusters across all single cells. (B) tSNE representation illustrating the three main subpopulations of macrophages, M0, M1, and 
M2. (C) Analysis of M1-related gene set activity in single-cell RNA-seq data. (D) Stacked bar plot showing the proportion of the 
three main cell clusters across four NSCLC patients. (E) Violin plot displaying the AUC values of M1-related genes among the 
three macrophage cell types. The “**” denotes p-value < 0.01, and “****” denotes p-value < 0.0001. (F) Bubble plot presenting 
the expression levels and percentages of six marker genes for each macrophage subpopulation
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Figure 5. Selection of M1-related prognostic biomarkers and analysis of prognostic signatures. (A) Venn diagram 
illustrating the overlap of candidate M1-related genes identified from M1 trait-related and M1 marker gene lists. The overlapping 
11 genes were RUNX3, ADAM19, LIMD2, PRKCB, CYTIP, FNBP1, ICAM3, WIPF1, TAP1, PSMB9, and LAP3. (B) (C) LASSO 
regression plots depicting dimension reduction to refine the selection of prognostic biomarkers. (D) Risk plot displaying the 
relationship between risk score and expression levels of four risk genes in the risk score model. (E) Kaplan-Meier survival 
curves comparing survival outcomes between low- and high-risk score groups in NSCLC patients

Table 2. The coefficient of the risk factors in multivariate Cox regression model

Risk factor Coefficient value HR value 95% CI (Low) 95% CI (High) p-value

ADAM19 0.035 1.035 1.012 1.059 0.003
ICAM3 –0.169 0.845 0.719 0.993 0.041
WIPF1 –0.029 0.972 0.941 1.004 0.083
LAP3 0.012 1.012 1.005 1.019 0.001
The first column indicates the risk gene, the second column indicates the coefficient value corresponding to its risk gene, the 
third column indicates the HR value, and the fourth and fifth columns show the HR value’s low and high 95% confidence 
interval, the last column shows the p-value

The risk score signature is an independent prognostic factor

To integrate multi-omics perspectives, we incorporated protein expression data from the HPA database 
using the HPAanalyze R package. Figure 6A presents an accumulated percentage bar chart for three of the 
four prognostic risk genes (the protein expression data of ADAM19 is unavailable from the HPA database.). 
Consistent with dysregulation observed in transcriptomic analysis, WIPF1 protein levels were notably 
decreased in tumor lung samples compared to normal lung samples. Additionally, genomic variations were 
detected in these prognostic genes. For instance, we observed an increased frequency of copy number 
amplification for the LAP3 gene in the LUAD and LUSC cohort from cBioPortal (Figure 6B). Independent 
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Figure 6. Performance of the risk score model constructed by prognostic genes. (A) Protein expression profiles of risk 
genes in normal lung tissue and NSCLC samples, highlighting dysregulation compared to normal cells. (B) Copy number 
variation (CNV) differences in risk genes within the risk score model. The horizontal axis represents the risk genes, while the 
vertical axis depicts the frequency of CNV events. Red indicates amplification, and green indicates deletion. Forest plot 
illustrating results from univariate (C) and multivariate (D) Cox prognostic regression models, displaying risk factors, 95% CIs, 
and HR values. HR < 1 and p-value < 0.05 indicate significantly better outcomes. (E) Nomogram for assessing the outcome of 
NSCLC patients, integrating age, gender, stage, and risk score into a prognostic risk score model. The “**” denotes p-value < 
0.01, “***” denotes p-value < 0.001, and “****” denotes p-value < 0.0001
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prognostic analysis was conducted to validate whether clinical characteristics and risk scores could serve 
as independent prognostic factors for NSCLC patients (Figure 6C, D). These results confirmed that age, 
gender, stage, and risk score are indeed independent risk factors. This suggests that these factors alone can 
predict outcomes in NSCLC patients without needing additional factors. A nomogram was generated using 
age, gender, stage, and risk score factors (Figure 6E). The nomogram facilitates the assessment of 3-, 5-, and 
10-year survival rates for each NSCLC patient.

Dysfunctional pathways in high- and low-risk score groups

The differential expression analysis between high- and low-risk groups was conducted, and the results are 
presented in Figure 7A. The high-risk group exhibited 86 up- and 239 down-regulated genes. The up-
regulated genes showed enrichment in pathways related to cell structure development, immune responses, 
and several signaling pathways, including skin and cartilage development, as well as cellular responses to 
interferon-gamma, IL-17, and Wnt signaling pathways (Figure 7B). Conversely, the down-regulated genes 
were enriched in pathways associated with disorders such as dopaminergic neurogenesis (Figure 7B). 
Additionally, GSEA corroborated these findings, highlighting enriched functional pathways among up-
regulated genes, including the cell cycle, cytokine receptor interaction, antigen processing and presentation, 
and toll-like receptor signaling pathway.

In contrast, down-regulated genes were enriched in pathways related to drug metabolism and steroid 
hormone biosynthesis (Figure 7C, D). To investigate the dysregulation pathways influenced by the risk 
score, we analyzed the relationship between the risk score and 50 cancer hallmarks. Figure 7E indicates 
that the risk score is significantly positively associated with DNA repair, adipogenesis, PI3K-AKT-mTOR 
signal, fatty acid metabolism, heme metabolism, bile acid metabolism, and oxidative metabolism. 
Conversely, the risk score is significantly negatively associated with G2M checkpoint, protein secretion, and 
peroxisome functions.

Discussion
Lung cancer remains the leading cause of cancer-related deaths worldwide [61, 62]. NSCLC accounts for 
approximately 80–85% of lung cancer cases [63]. Despite significant progress in understanding the 
pathological mechanisms of NSCLC over the past decades [5, 64–66], considerable challenges remain. One 
major limitation of current immunotherapies is their inability to effectively discriminate between targets, 
resulting in a 5-year survival rate of only 10–30% for all NSCLC patients [67, 68]. Macrophages, which are a 
crucial component of the human innate immune system, possess powerful capabilities to identify, 
phagocytize, and eliminate bacteria and foreign substances [69]. Typically, macrophages are classified into 
three distinct subtypes: M0, M1, and M2 [69]. TAMs are extensively studied in cancer diagnosis and 
treatment research. For example, monoamine oxidase A has been shown to reprogram TAMs and inhibit 
tumor cell proliferation in ovarian cancer by increasing oxidative stress, as demonstrated in a series of in 
vivo experiments [70, 71]. Additionally, autophagy-dependent ferroptosis promotes TAM polarization in 
pancreatic cancer through the release and absorption of the oncogenic KRAS protein [72]. However, the 
role of M1 macrophage infiltration in NSCLC remains unclear. To identify the best candidates for immune 
response-based therapies, it is essential to find accurate prognostic biomarkers that go beyond immune 
escape mechanisms.

In this study, we classified 1,475 samples into two groups based on the median infiltration levels of M0, 
M1, and M2 macrophages, respectively. The results of survival analysis curves demonstrated that the 
subgroups classified according to M1 immune cell infiltration exhibit the most significant difference in 
survival time. Interestingly, patients with high M1 infiltration have a longer survival time compared to 
those with low M1 infiltration. Through WGCNA analysis, we identified 222 co-expressed genes in the pink 
module associated with the M1 trait in NSCLC patients, while scRNA-seq analysis revealed 434 marker 
genes in the M1 subpopulation. We hypothesize that the overlapping genes play a crucial role in the 
development and progression of NSCLC by affecting the function of the M1 macrophage subcluster. To 
avoid overfitting caused by collinearly correlated genes, we employed LASSO regression. To assess the 
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Figure 7. The predictive mechanisms and functional pathways of low- and high-risk score groups. (A) Volcano plot 
displaying gene expression levels in low- and high-risk score patients. The x-axis represents log2FC, while the y-axis represents 
–log10(p-value). Red dots indicate significantly up-regulated genes, and blue dots indicate significantly down-regulated genes in 
high-risk score samples. (B) GO term (molecular function category) enrichment analysis results for up- and down-regulated 
genes. The upper panel shows pathways enriched by up-regulated DEGs, while the lower panel shows pathways enriched by 
down-regulated DEGs. GSEA results reveal significant biological pathways enriched in high- (C) and low-risk score groups (D). 
The horizontal axis depicts the running enrichment score, while the vertical axis displays gene members sorted in a list. (E) 
ssGSEA results show the correlation between the risk score and activities of 50 cancer hallmark gene set pathways. Red 
indicates up-regulation in the high-risk score group, while purple indicates down-regulation in the high-risk score group
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prognosis of NSCLC patients, we constructed a risk score model based on the Cox regression model, which 
combines the expression levels of risk genes with patients’ clinical information. Additionally, we integrated 
bulk and single-cell transcriptomic data with proteomic data to support our identified risk genes.

Two of the four M1 macrophage-related genes (ADAM19, ICAM3, WIPF1, and LAP3) have been reported 
to be associated with NSCLC. (1) ADAM19 (ADAM Metallopeptidase Domain 19), located on chromosome 
5q33.3, is a protein-coding gene that is highly expressed in the adrenal glands, lungs, lymph nodes, prostate, 
and white blood cells, based on the Illumina BodyMap2 transcriptome project (https://www.ncbi.nlm.nih.
gov/gene/8728). As a transmembrane protein, ADAM19 possesses both cell adhesion and protease activity 
due to its disintegrin and metalloprotease domain [73, 74]. ADAM19 is associated with immune cell 
infiltration and can predict the prognosis of various complex diseases, including osteosarcoma 
nephrogenesis and renal disease [75–77]. Macrophage infiltration, fibrotic gene expression, and CCL2 are 
directly enhanced by the upregulation of ADAM19, as demonstrated in vivo experiments [78]. The 
fibrogenic effects of ADAM19 were mitigated by using clodronate liposomes to deplete macrophages [78]. 
ADAM gene products have a broad spectrum of biological functions, including myogenesis, fertilization, and 
inflammatory response [73, 79]. Shan et al. [80] demonstrated that ADAM19 knockdown inhibited the 
migration and invasion of NSCLC cells in two in vitro experiments using the A549 and H157 cell lines. They 
found that the upregulation of ADAM19 was significantly associated with lymph node status and tumor 
stage. Wang et al. [81] reported that miR-145 inhibits cell invasion and metastasis by downregulating 
ADAM19 in NSCLC. These findings suggest that ADAM19 is a poor prognostic factor in NSCLC, which aligns 
with our conclusions. (2) ICAM3 (Intercellular Adhesion Molecule 3), located on chromosome 19p13.2, is a 
protein-coding gene that is highly expressed in the adrenal glands, lungs, lymph nodes, and white blood 
cells, as indicated by the Illumina BodyMap2 transcriptome project (https://www.ncbi.nlm.nih.gov/gene/
3385). ICAM3 is involved in the intercellular adhesion of leukocytes and the maintenance of cell viability. 
ICAM3 also activates cancer cell proliferation through the PI3K/Akt pathway in lung cancer and induces 
radiation resistance through the FAK signaling pathway in cervical cancer [82, 83]. According to studies by 
Cassol and Saha et al. [84, 85], ICAM3 can mediate the polarization of macrophages in vitro. In the NSCLC 
cell line NCI-H1299, ICAM3 plays a crucial role in developing anti-cancer drug resistance, mediated by the 
ICAM3/Akt and ERK-CREB-2 protein pathways, independent of p53 and PTEN, according to Ahn et al. [86]. 
Park et al. [87] also reported that ICAM3 is a cancer diagnostic marker and anti-cancer drug target in NSCLC 
because it promotes cancer cell invasion and migration through the ICAM3/Akt/CREB/MMP pathway in the 
absence of p53 and PTEN. For the two remaining M1 macrophage-related genes (WIPF1 and LAP3), no 
results were available to report their prognostic roles in NSCLC. Thus, further research is necessary to 
explore how these genes affect the prognosis of patients with NSCLC through M1 macrophage immune 
regulation.

The risk score is calculated by a linear combination of the correlation coefficient and the expression of 
M1-related risk genes. It serves as an independent risk factor for predicting the prognosis of NSCLC. NSCLC 
patients were divided into two groups based on the risk scoring system using the optimal cutoff. The 
survival time differed significantly between high- and low-risk groups. The risk genes were validated at 
both the CNV and protein expression levels. LAP3 and WIPF1 are downregulated in lung cancer, while 
ICAM3 is upregulated compared to normal lung tissue, based on IHC experiments from the HPA database. 
WIPE1 and LAP3 exhibit significantly higher copy number amplification, whereas ADAM19 shows 
considerable copy number deletion in NSCLC patients. Although there is no detailed research on the 
mechanisms of these genes in lung cancer, they are reported to be critical to cancer development and 
influence patient outcomes. LAP3 overexpression plays a crucial role in tumor metastasis by promoting the 
proliferation, angiogenesis, migration, and invasion of malignant cells in breast cancer, hepatocellular 
carcinoma, and ovarian cancer [88–90]. Zhang et al. [91] reported that hypomethylation and upregulated 
WIPF1 are therapeutic targets for thyroid cancer activated by the BRAF V600E mutation. In pancreatic 
ductal adenocarcinoma patients, WIPF1 is associated with poor survival [92]. CNVs are structurally diverse 
regions where CNVs have been identified between two or more genomes [93]. Pan-cancer research has 
shown that most genes exhibit a positive linear relationship between copy number and gene expression 
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(copy number amplification is associated with upregulation of the gene, while copy number deletion is 
associated with downregulation of the gene) [94]. Our conclusion aligns with the general theory about 
biomarkers in cancer, but further experiments using molecular functional methods are needed.

There are 86 significantly upregulated genes and 239 significantly downregulated genes in high-risk 
score cohorts compared to low-risk score cohorts. Additionally, the functional pathways between high- and 
low-risk score groups differ. Upregulated genes are mainly enriched in IL-17, type II interferon, Wnt, and 
PI3K-AKT-mTOR signaling pathways, and immunological reaction processes, such as cytokine-receptor 
interaction, antigen processing, and presentation, and cellular response to type I interferon. We also found 
a significant positive correlation between the risk score and common cancer hallmarks, including DNA 
repair, adipogenesis, and oxidative metabolism. Stewart [95] observed that WNT1, WNT2, WNT3, and 
WNT5A, as well as Wnt signaling pathway components Frizzled-8 and TCF4, are overexpressed in NSCLC 
patients and linked to poor prognosis. Some lncRNAs were identified as prognostic biomarkers for NSCLC. 
For example, BLACAT1 inhibits epithelial-mesenchymal transition by downregulating the Wnt/beta-
catenin signaling pathway and is negatively related to the prognosis of NSCLC patients [96]. PKMY1AR 
enhances tumor stem cell maintenance by initiating the Wnt signaling pathway [97]. Thompson et al. [98] 
demonstrated that deficiencies in antigen presentation play a significant role in predicting immune 
checkpoint blockade in melanoma and lung cancer, summarizing that the antigen processing machinery 
score is associated with progression-free survival time. Oxidative stress and reactive oxygen stimulate 
carcinogenesis-related pathways in the respiratory system [99, 100]. Thus, the risk score might be a good 
system for predicting the outcome of NSCLC patients based on studies at the functional level.

Several limitations exist in the current study. First, the data source is singular, and the sample size is 
limited, which may introduce bias in the analysis results. Second, our study is retrospective, necessitating 
further prospective studies to validate the prognostic function of M1 macrophage-related signals. Third, the 
robustness of our prognostic model needs confirmation in other independent cohorts. Fourth, functional 
experiments are required to elucidate the potential molecular mechanisms for predicting the effects of M1 
macrophage genes.

In conclusion, the four M1 macrophage-related genes and their signature may serve as molecular 
biomarkers for patients with NSCLC. Our research demonstrated that the risk score model is a reliable 
prognostic indicator for NSCLC and is associated with immunotherapy and features of immune infiltration. 
This study contributes to a comprehensive and systematic understanding of the role of M1 macrophages in 
the prognosis of NSCLC.
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