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Abstract
Lung cancer remains a leading cause of cancer-related deaths globally, and a significant number of patients 
are ineligible for surgery, while chemoradiotherapy often shows limited efficacy, a systemic distribution, a 
low drug concentration at tumor sites, severe side effects, and the emergence of drug resistance. In this 
context, a nanodrug delivery system (NDDS) has emerged as a promising approach for lung cancer 
treatment, offering distinct advantages such as targeted delivery, responsiveness to the tumor 
microenvironment, site-specific release, and enhanced induction of apoptosis in cancer cells, ultimately 
leading to tumor growth inhibition or even elimination. This review aims to provide an overview of the 
physiological characteristics of lung cancer, highlight the limitations of conventional treatment methods, 
and extensively examine recent significant advancements in NDDS utilized for lung cancer therapy. The 
findings from this review lay the foundation for further development and optimization of NDDSs in the 
treatment of lung cancer.
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Introduction
Lung cancer is the leading cause of cancer deaths worldwide, with approximately 2.2 million (11.4%) new 
cases and 1.8 million (18.0%) deaths reported in 2020 [1]. It is a highly heterogeneous disease with 
complex clinical effects and a poor prognosis [2]. Due to the lack of preventive measures and early 
diagnosis methods and the variability of the tumor environment, lung cancer is prone to high metastasis 
and recurrence rates and multidrug resistance (MDR) [3]. Therefore, improving the therapeutic effect on 
lung cancer is an urgent problem.
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Histological studies of cancer cells have categorized lung cancer into two types: small cell lung cancer 
(SCLC) and non-SCLC (NSCLC), with SCLC accounting for approximately 15% and NSCLC accounting for 
approximately 85% of cases [4]. Although current medical technology can effectively intervene in 
pulmonary neoplasms to a certain extent through surgical resection, chemotherapy, and radiotherapy, 
improving the survival rate of lung cancer patients remains challenging [5].

Surgery is not suitable for all patients, as lung cancer is often diagnosed at an advanced stage and has a 
poor prognosis and high recurrence rate. Radiotherapy, on the other hand, has strong systemic side effects 
and can cause skin damage in the radiated area, limiting its therapeutic effect [6]. Chemotherapy, another 
main treatment for intermediate-stage disease, is hindered by poor water solubility, lack of targeting, and 
the first-pass effects of most drugs, resulting in low drug concentrations at the tumor site [7, 8]. As a result, 
current treatments are not highly effective.

However, due to the significantly higher growth rate of tumor tissues compared to normal tissues, 
defects between tumor vascular endothelial cells, wider gaps in the vascular wall, poor structural integrity, 
insufficient lymphatic drainage within the tumor, and a lower blood flow rate, macromolecular-like 
substances and lipid particles can selectively permeate and be retained in the tumor, which is known as the 
enhanced permeability and retention (EPR) effect [9]. This phenomenon provides opportunities for 
developing novel therapeutic approaches that exploit these characteristics.

Nano-based agents have the ability to overcome biological and chemical barriers within the human 
body. They can improve the pharmacokinetics and biodistribution of drugs and prevent early inactivation 
or biodegradation [10]. Additionally, they can be functionalized with modified targeting ligands, antibodies, 
and peptides to anchor them to receptor-overexpressing structures and specifically bind to cancer cells 
[11]. This enables active targeting, tumor site accumulation, and responsiveness to the tumor 
microenvironment (TME) or external stimuli such as temperature, light, and ultrasound, thus influencing 
these agents’ affinity or binding state, triggering the release of drugs, and promoting accumulation of 
therapeutic molecules in tumor tissues [12]. Moreover, the use of nano-based agents can reduce 
accumulation in normal organs, minimize systemic toxicity, and enhance treatment efficacy [13]. The use of 
nano-based carriers for drug delivery offers several advantages, including a high surface area-to-volume 
ratio, adjustable thermal, magnetic, optical, and electrical properties, an ability to synthesize diverse shapes 
and sizes, a high drug loading capacity, and stimulus-response sensitivity for precise spatiotemporal 
controlled drug release [14]. However, despite promising results in preclinical trials, the clinical translation 
potential of nano-based agents has not been fully realized due to challenges associated with reproducibility, 
large-scale manufacturing, and potential toxicological and safety hazards. In this study, we aim to leverage 
the physiological characteristics of lung cancer to clarify drug targets and behavioral processes in the tumor 
environment and thus provide insights for the design of more intelligent and successful drug delivery 
systems.

Physiological characteristics of lung cancer
Lung cancer is an intricate and diverse disease marked by the deterioration of lung epithelial cells [15]. 
Developing a profound understanding of the physiological attributes of the disease is essential to drive 
research in innovative diagnostic methods, treatments, and prognostic assessments. Targeted regulation of 
abnormal molecular signals and their subsequent pathways offers a promising avenue for the development 
of therapeutic interventions. To devise effective strategies for lung cancer treatment, elucidating the 
molecular pathogenesis, epigenetics, and signaling pathways mediated by pertinent molecules is imperative 
(Figure 1).

Similar to other tumors, the development of lung cancer involves activation of growth-promoting 
proteins, such as EGFR, Kirsten RAS oncogene homolog (KRAS), and HER2. Notably, more than 50% of 
NSCLC patients who smoke and consume alcohol have p53 mutations, and certain compounds have shown 
potential for reactivating p53 for lung cancer treatment [16].
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Figure 1. Typical signaling pathways in lung cancer. Created by Figdraw. The arrows mean the direction of signal transmission, 
except that before “apoptosis” means induction. AKT: protein kinase B; ALK: anaplastic lymphoma kinase; Apaf: apoptotic 
protease activating factor; Bcl-2: B cell lymphoma 2; Bak: Bcl-2 homologous antagonist/killer; Bax: Bcl-2-associated X protein; 
Bcl-XL: Bcl-extra large; EGFR: epidermal growth factor (EGF) receptor; ERK: extracellular signal-regulated kinase; HER: human 
EGFR receptor; JAK: Janus kinase; MAK: male germ cell-associated kinase; Mcl-1: myeloid cell leukemia 1; MET: 
mesenchymal-epithelial transition factor; PI3K: phosphatidylinositol 3-kinase; RAF: rapidly accelerated fibrosarcoma; RAS: rat 
sarcoma; STAT: signal transducer and activator of transcription; VEGFR: vascular endothelial growth factor (VEGF) receptor

Lung cancer biomarkers, which are identified through chromosomal aberrations and mutations, often 
serve as attractive therapeutic targets. In this section, we will discuss the common variant types and clinical 
significance of proto-oncogenes, oncogenes, and molecular signaling pathways in lung cancer. Furthermore, 
we will explore mutated genes, specific ligands, and the tumor metastasis microenvironment associated 
with lung cancer, aiming to provide insights into the development of nanodrug delivery systems (NDDSs) 
for lung cancer [17]. By probing into the scientific understanding of lung cancer at various levels, 
researchers can pave the way for personalized and comprehensive treatment strategies that consider 
genetic, molecular, histopathological, and clinical factors, which holds promise for improving the diagnosis, 
treatment, and prognosis of lung cancer.

Occurrence of lung cancer

Lung cancer occurs mainly due to genetic mutations, including EGFR oncogenic mutations, ALK and ROS 
proto-oncogene 1-receptor tyrosine kinase (ROS1) fusion, and v-raf murine sarcoma viral oncogene 
homolog B1 (BRAF) mutations, which have been approved by the U.S. Food and Drug Administration (FDA) 
as therapeutic targets for NSCLC. In addition, KRAS mutations, aberrations in MET, which encodes the 
hepatocyte growth factor (HGF) receptor (HGFR), and mitogen-activated protein kinase kinase 1 (MEK1) 
overexpression in NSCLC may also be potential targets for the treatment of lung cancer [18].

EGFR is a member of the Erb-B2 receptor tyrosine kinase 2 (ErbB) family of transmembrane receptor 
tyrosine kinases (TKs). The ErbB receptor consists of an extracellular ligand binding domain, a 
transmembrane domain, and an intracellular TK domain [19]. Seven known ligands of EGFR induce 
different biological effects even in the same cell [20]. EGFR can induce signaling pathways, including the 
PI3K/AKT/mammalian target of rapamycin (mTOR) pathway, RAS/RAF/MEK/ERK pathway, and 
JAK/STAT pathway, which are involved in the pathogenesis of various tumors, including NSCLC [21]. 
Mutations in the EGFR gene affect tumor pathogenesis, including cell proliferation, survival, and 
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differentiation, neovascularization, invasion, and metastasis [22]. Therefore, EGFR inhibitors are typically 
compounds that directly inhibit TK phosphorylation through physical interaction with ATP or enzyme-
substrate binding sites. Third-generation TK inhibitors (TKIs), such as osimertinib, which has shown 
efficacy against EGFR T790M mutations, have been developed to overcome resistance to previous EGFR 
inhibitors.

HER2 is another receptor TK in the ErbB/HER family, which together with EGFR encodes a membrane-
bound glycoprotein TK that binds to other ligands to form a heterodimer and activates downstream 
signaling [23]. HER2 amplifications and mutations are considered to be usually unrelated and clinically 
distinct driver alterations that can be used to segment lung adenocarcinoma patients for targeted therapy 
[24, 25], and the development of drugs targeting HER2 remains an urgent clinical need [26]. HER2 
aberrations in lung cancer may be resistant to EGFR TKI therapy due to tissue specificity [27]. Currently, 
trastuzumab/paclitaxel (PTX) combination therapy has promising applications for the treatment of HER2-
positive lung cancer.

The KRAS gene is a member of the RAS proto-oncogene family, which includes neuroblastoma RAS viral 
oncogene homolog (NRAS) and Harvey RAS viral oncogene homolog (HRAS). G proteins encoded by the 
KRAS gene play a key role in regulating cell proliferation, differentiation, and growth signal transduction 
pathways [28]. In normal resting cells, RAS protein binds to guanosine-5’-diphosphate (GDP) in an inactive 
state; when the upstream growth factor receptor is activated, RAS protein binds to guanosine triphosphate 
(GTP) and becomes active [29], which causes the protein to lose its intrinsic GTPase activity, preventing 
GTP from turning into GDP and thus resulting in the unchecked proliferation of the RAS/RAF/MEK/ERK 
signaling pathway downstream of EGFR [30]. Although KARS mutations are common in lung cancer, the 
results of clinical trials of relevant targeted drugs have been unsatisfactory, and further research is needed.

The BRAF gene encodes serine/threonine protein kinase, a downstream effector protein of KRAS [31]. 
BRAF proteins are RAS-RAF-MEK-activated ERKs that play a critical role in the MAPK/ERK signaling 
pathway and are involved in the regulation of cell proliferation and growth [32]. The therapeutic regimen of 
the BRAF inhibitor dabrafenib combined with the downstream MEK inhibitor trametinib for NSCLC with 
metastatic BRAF V600e mutation has been approved by the FDA and European Medicines Agency (EMA) 
[33]. Novartis has received approval from the State Drug Administration for a new indication for the 
treatment of BRAF V600 mutation-positive metastatic NSCLC with the dual-targeted combination of 
dabrafenib mesylate capsules and trametinib tablets.

ALK belongs to the insulin receptor superfamily [34], is activated by the family with sequence 
similarity 72 member A (FAM150A) and FAM150B ligands [35], and is expressed as a fusion gene in various 
cancers [36]. The ALK fusion protein dimerizes in a ligand-independent manner and activates the 
PI3K/AKT, RAS/RAF/MAPK1, and JAK/tyrosine aminotransferase (TAT) signaling pathways via the 
abnormal structure of the ALK TK. The abnormal constitutive activation of ALK TK leads to cell 
proliferation disorder and participates in the regulation of cell proliferation and apoptosis. To date, three 
ALK TKIs (crizotinib, ceritinib, and alectinib) have been used clinically for the treatment of ALK-abnormal 
NSCLC [37]. ALK TKIs often achieve significant tumor regression in patients with NSCLC with ALK 
rearrangements; however, in most cases, ALK TKI-resistant tumors’ likelihood of reemergence is high 
within a few years.

ROS1 encodes a receptor TK containing a large N-terminal extracellular region [38], a 3-hydrophobic 
one-way transmembrane region, and a C-terminal intracellular TK region [39, 40]. ROS1 regulates cell 
growth and apoptosis through the MAPK/ERK, PI3K/AKT, JAK/STAT3, and Src homology 2 domain-
containing protein tyrosine phosphatase 1/2 (SHP1/2) signaling pathways [41]. All ROS1 fusions retain 14 
intact ROS1 kinase structural domains [42]. Bilateral lung adenocarcinomas occur in transgenic mice 
expressing ezrin (EZR)-ROS1 in the alveolar epithelium [43]. Crizotinib, an ALK/ROS1/MET inhibitor, is an 
FDA-approved targeted agent for the treatment of advanced ROS1-rearranged NSCLC, and studies have 
shown that some ALK TKIs have dual inhibitory activity against ALK and ROS1 [44].
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The MET gene encodes HGFR [45], which affects key processes such as cell proliferation, 
differentiation, motility, and tumor angiogenesis through the PI3K/mTOR, STAT, and MAPK signaling 
pathways [46, 47] and is closely associated with the development of various cancers [48]. However, MET 
exon 14 jump mutations and high levels of MET amplification have emerged as potential predictive 
biomarkers [49, 50]. Capmatinib (INC280) is a potent and selective MET receptor inhibitor that has shown 
antitumor activity with various MET activations and can cross the blood-brain barrier [51]. Monoclonal 
antibodies to the MET TKI onartuzumab in combination with the EGFR TKI erlotinib block HGF binding to 
MET receptors for second and third-line treatment of NSCLC after chemotherapy failure [52].

Lung cancer metastasis-related molecules

The main objective of systemic therapy for metastatic NSCLC is to reduce the burden of symptoms and 
improve the survival rate and quality of life [53]. Many cytotoxic chemotherapy regimens exhibit significant 
toxicities (e.g., alopecia, nausea), and the role of surgery and radiotherapy in prolonging disease-free 
survival is being studied for patients with lower metastatic tumor burdens. However, targets for drugs that 
are essential for tumor cell survival or immune evasion and can be tailored to patients’ tumor 
characteristics remain to be identified [54].

CD44 plays an important role in cell adhesion [55] and has a significant negative correlation with 
transfer potential [56]. The cell surface adhesion receptor CD44 is a positive regulator of programmed cell 
death ligand 1 (PD-L1) expression in NSCLC cells. CD44 activates PD-L1 transcription by cleavage of the 
intracytoplasmic domain. In one study, the proportion of PD-L1 tumors in patients with metastatic NSCLC 
was scored as 1% [57], providing a new rationale for CD44 as a key therapeutic target to inhibit intrinsic 
PD-L1 tumor function [58]. Effector T cell depletion is caused by decreased phosphorylation of various 
signaling molecules, such as ERK, Vav, and phospholipase Cγ (PLCγ) [59], which regulate T cell activation 
and proliferation through nuclear factors that activate T cells, leading to cancer immune evasion and 
promoting the growth, migration, and invasion of lung cancer cells [60].

The metastasis of lung cancer to the central nervous system (CNS) is the main clinical obstacle leading 
to the low 5-year survival rate of advanced diseases. Therapeutic drugs do not easily cross the blood-brain 
barrier, which substantially limits treatment and results in a poor prognosis. Therefore, the relevant driving 
factors and molecular mechanisms of tumor metastasis and targeted prevention and treatment require 
attention. Cytoskeletal proteins and motility-related genes such as metallothionein 2A (MT2A), fascin actin-
bundling protein 1 (FSCN1), microtubule-associated protein 7 (MAP7), and chemokine-CXC-motif 
chemokine ligand 13 (CXCL13) were significantly upregulated in tumor metastases. CXC-motif chemokine 
receptor 4 (CXCR4) is expressed in 90% of primary tumors and 100% of brain metastases, and CX3C-motif 
chemokine receptor 1 (CX3CR1) is also a chemokine ligand associated with lung cancer and metastatic 
spread [61]. Overexpression of N-cadherin and decreased expression of kinesin family member C1 (KIFC1), 
E-cadherin, and BPTF/FALZ can predict brain metastasis [62]. HGFR expression is observed in 
approximately 30% of adenocarcinomas, and cellular-MET (c-MET) amplification is observed in 
approximately 10% of adenocarcinomas [63].

TME

The TME consists of extracellular matrix, soluble components (growth factors, chemokines, etc.), and 
cellular components (tumor cells, fibroblasts, endothelial cells, etc.). Tumor-associated macrophages 
(TAMs), vascular endothelial cells, and fibroblasts in the tumor matrix secrete growth factors and 
chemokines to attract and regulate the behavior of stromal cells and immune cells and promote tumor 
formation and growth. Tumor-derived cytokines such as IL-6, growth arrest specific protein 6 (GAS6), HGF 
and EGF can promote resistance to targeted therapy through autocrine signaling [64]. The interaction 
between tumor cells and the TME, such as changing cell adhesion by increasing the expression of cadherin 
and integrin β1 and reducing the expression of β2-microglobulin, affects the response of tumor cells to 
targeted therapy. Cytokines secreted by cancer-associated fibroblasts (CAFs) and mesenchymal stem cells 
(MSCs) in the matrix lead to EGFR TKI resistance by activating CXCR4 and IL-6R [65]. Due to an insufficient 
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oxygen supply, tumor cells are able to metabolize energy only through anaerobic enzymes, resulting in 
lactic acid accumulation; meanwhile, ion exchange proteins on the tumor cell membrane are constantly 
transporting intracellular H+ outside the cell to avoid causing acidosis, resulting in a lower pH of the TME 
and an acidic environment, which will cause apoptosis and release cell debris and chemokines, leading to 
inflammatory cell infiltration and inflammatory factor secretion. However, the typical characteristics of the 
TME, such as hypoxia, low pH, and a high bioreduction environment, can be used as the conditions for 
stimulus-responsive drug release [66]. Chen et al. [67] found that hypoxia can improve the drug resistance 
of adriamycin in the treatment of NSCLC by inhibiting the expression of MDR-associated protein 1 (MRP1) 
and P-glycoprotein (P-gp) and enhancing the chemical sensitization of MRP1 and P-gp blockers.

Tumor angiogenesis and vascular abnormalities are critical to the growth and metastasis of solid 
tumors [68], and many proteins and small molecules have been demonstrated to be involved in 
angiogenesis, including VEGF, platelet-derived growth factor (PDGF), and fibroblast growth factor (FGF). 
Small-molecule TKIs, particularly multitargeted vascular kinase inhibitors, selectively inhibit downstream 
VEGFR pathway-mediated activation [69]. At present, various small-molecule antiangiogenic TKIs, such as 
apatinib, anlotinib, and nintedanib, have been used and evaluated in lung cancer clinical studies, as well as 
FGF receptor (FGFR) with TKIs alone or in combination with chemotherapy [70, 71].

NSCLC is immunogenic [72], and approximately two-thirds of lung tumor-infiltrating immune cells 
consist of T and B cells, with the remainder consisting of TAMs, neutrophils, a few dendritic cells (DCs) and 
natural killer (NK) cells [73], which are involved in antitumor responses [74]. A decrease in NK cells and 
enrichment of regulatory T (Treg) cells at tumor sites, where CD4+ Th1 cells, activated CD8+ T cells, and 
even γδ-T cells are frequently involved in type I immune responses, are associated with a good prognosis in 
lung cancer patients [75]. Immune checkpoint inhibitors (ICIs) have become the treatment of choice for 
recurrent or metastatic cancers, with the most widely used being anti-cytotoxic T lymphocyte associated 
protein 4 (CTLA4) and anti-programmed cell death protein-1 (PD1) antibodies [76]. CTLA4 is expressed on 
tumor-infiltrating T cells and is an inhibitory receptor whose main role is to regulate the degree of early T 
cell activation [77]. Anti-CTLA4 antibodies block inhibitory signals between antigen-presenting cells and T 
lymphocytes involving CTLA4 molecules. PD1 is highly expressed in Treg cells, and its main role is to inhibit 
T cell activation in peripheral tissues and suppress autoimmunity [78, 79]. Targeted immunoregulatory 
molecules, such as anti-4-1BB, Ox40, inducible T cell costimulator (ICOS), and CD40, block antibodies of 
lymphocyte-activation gene 3 (LAG3), B7-H4, Tim3, and killer Ig-like receptors (KIRs), and related 
therapeutic drugs are being developed. Since in vivo immune regulation involves complex regulatory 
pathways, combination immunotherapy will have a better therapeutic effect [80].

Ligands targeting tumor-specific receptors
In the context of cancer treatment, a successful cure often depends on achieving high concentrations of 
drugs specifically within tumor tissues. Systemic distribution of drugs throughout the body can lead to 
adverse effects and hinder the desired therapeutic outcomes. To overcome these limitations, nanocarriers 
have emerged as promising vehicles for drug delivery, offering improved pharmacokinetics and targeted 
delivery to tumors. Extensive research efforts have focused on designing nanoparticles with multiple 
functions to address the biological barriers encountered during intravenous administration. When 
nanoparticles are administered intravenously, they tend to be taken up by resident macrophages of the 
mononuclear phagocyte system (MPS) [81]. Consequently, significant accumulation of nanoparticles occurs 
in organs such as the spleen and liver, resulting in nonspecific distribution of nanotherapeutic drugs to 
healthy organs.

To overcome these challenges, identifying specific ligands that can selectively target receptors 
expressed by lung cancer cells is crucial. Active targeting strategies can be employed to achieve site-specific 
delivery of therapeutic drugs and facilitate their efficient accumulation in lung cancer tissues. By employing 
nanocarriers with active targeting capabilities, enhancing the specificity and efficiency of drug delivery to 
lung cancer cells becomes feasible. This approach holds significant potential for improving the therapeutic 
outcomes of lung cancer treatment while minimizing adverse effects on healthy organs.
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Folate

The folate receptor (FR) family consists of four members, including FRα, FRβ, FRγ, and FRδ [82]. Silencing 
FR expression can inhibit the proliferation of cancer cells and promote apoptosis of human NSCLC cells 
[83]. FRβ has been demonstrated to be overexpressed in M2-polarized TAMs, and FR-positive TAMs are 
related to the poor prognosis of lung cancer [84]. By targeting FR overexpression of M2 TAMs and tumor 
cells, the proportion of M2 TAMs was reduced, and the proliferation and metastasis of tumor cells were 
inhibited, which had a synergistic effect on inhibiting tumors. Tie et al. [85] targeted FRβ-positive TAMs in 
lung cancer with folic acid-modified liposome complexes, which significantly promoted apoptosis of tumor 
cells and M2 TAMs. Clinical studies are currently assessing the efficacy of FRα combined with 
chemotherapy drugs and humanized anti-FRα antibodies [86].

Transferrin

The transferrin (Tf) family plays an essential role in transporting ferrum in blood after the formation of 
ferritin complexes and proliferation, differentiation, and even antioxidation. The expression of Tf receptor 
(TfR) in tumor cells is approximately 100 times that in normal cells. Tf is a glycoprotein that controls 
extracellular ferrum levels, reversibly binds multivalent ions, including copper, cobalt, and ruthenium [87], 
and is widely used as a targeting ligand. Coupling anticancer drugs with Tf can significantly improve 
selectivity and toxicity and overcome drug resistance, resulting in better therapeutic outcomes [88]. Lu et 
al. [89] designed self-assembled DNA and Tf to form a dual-targeted ruthenium complex with antitumor 
and antimetastatic properties that inhibits tumor growth and prevents lung metastasis by acting on Tf/TfR.

iRGD

VEGF, αvβ3 integrin, matrix metalloproteinase (MMP), and vascular cell binding molecule-1 (VCAM-1) are 
overexpressed in tumor vascular endothelial cells. Using the tumor homologous peptide iRGD 
(CRGDKGPDC) as the binding agent, a peptide-mediated delivery strategy for compounds penetrating into 
the tumor parenchyma was developed [90]. Combined with iRGD, the sensitivity of tumor imaging agents 
can be significantly improved, which is helpful for deep tumor penetration in the preparation and delivery 
of therapeutic molecules to the target site and enhancement of the activity of antitumor drugs. Su et al. [91] 
designed a dual-targeted combination drug delivery system based on multiwalled carbon nanotubes 
(MWNTs) for the antiangiogenic treatment of lung cancer, which showed significant tumor growth 
inhibition in A549 cells and xenograft nude mice.

β2-adrenergic receptor agonists

β2-adrenergic receptors (β2-ARs) are highly expressed in bronchial smooth muscle and the lung. Different 
β2-AR agonists, such as formoterol and salmeterol, have been used as targeted ligands to enhance receptor-
mediated delivery to the lungs [92]. β-AR belongs to the G-protein-coupled receptor (GPCR) family and is 
subdivided into three different subtypes: β1, β2, and β3 [93]. The binding of β2-AR agonists to GPCRs leads 
to the internalization of receptor/ligand complexes through a process mediated by globulin [94]. Elfinger et 
al. [95] used the β2-AR agonist clenbuterol (Clen) to improve the gene transfer efficiency of the 
polyethylenimine (PEI) gene vector in vitro in alveolar epithelial cells and in vivo in the mouse lung, which 
led to the uptake of clenbuterol-specific cells mainly into alveolar epithelial cells, indicating that the 
coupling of β2-AR ligands to nonviral gene vectors is a promising method to improve gene delivery to the 
lungs.

Tumor necrosis factor-related apoptosis-inducing ligand

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is an apoptotic target currently under 
exploration for cancer drug development. TRAIL, a member of the tumor necrosis factor (TNF) receptor 
superfamily, is a type II transmembrane protein that can induce cancer cell apoptosis [96]. As a stable 
soluble trimer, this protein selectively induces apoptosis in many cancerous cells but does not induce 
apoptosis in normal cells. Therefore, TRAIL can be used to selectively target cancer cells and has attracted 
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widespread attention as a potential tumor-specific cancer therapeutic agent [97]. Interferon (IFN) activates 
Apo2 ligand (Apo2L)/TRAIL transcription through specific regulatory elements in its promoter and may be 
involved in the activation of NK cells, cytotoxic T lymphocytes, and DCs [98]. The activated antibody against 
the TRAIL receptor and a soluble truncated TRAIL ligand are in phase I/II clinical trials for cancer 
treatment [99].

Bombesin

Bombesin (BN) receptor (BNR), also known as gastrin-releasing peptide (GRP) receptor, belongs to the 
GPCR superfamily and has been found to be overexpressed in lung cancer, prostate cancer, breast cancer, 
and pancreatic cancer [100]. In preclinical studies, some nonradioactively labeled ligand-drug complexes 
constructed by the combination of BN with camptothecin (CPT), doxorubicin (DOX), PTX, and other 
chemotherapeutic drugs have successfully improved the selectivity and efficacy of these drugs [101]. A 
nanostructured lipid carrier (NLC) with DOX and DNA-loaded BN-coupled polyethylene glycol (PEG) 
stearate (BN-PEG-SA) was synthesized and found to serve as a better carrier for improved cellular targeting 
and nuclear targeting, and its nanodrug may be a promising active targeting drug/gene therapy system for 
lung cancer treatment [102].

N-acetyl-d-glucosamine

Glucose can be used as a targeted molecule in the drug delivery system to promote drug transport and 
endocytosis [103]. Glucose transporters (GLUT), such as GLUT-1, are overexpressed in tumors of the brain, 
colon, liver, and lung [104]. GLUTs targeting various tumors have been successfully used for positron 
emission tomography, magnetic resonance contrast imaging, and gene targeting. As a glucose receptor 
targeting ligand, N-acetyl-d-glucosamine (GlcNAc) has good water solubility, which is helpful for enhancing 
the solubility and internalization of NDDSs. A synthetic polymeric drug conjugate, PEG-DOX conjugate, 
coupled to GlcNAc as a tumor tissue-targeting ligand, showed significantly enhanced cytotoxicity and 
stronger internalization and retention in cancer cells [105].

Hyaluronic acid

Hyaluronic acid (HA) is a widely distributed extracellular matrix polysaccharide with biocompatible and 
biodegradable properties that belongs to the glycosaminoglycan family [106]. The linear structure of HA is 
composed of alternating glucuronic acid (GlcA) and GlcNAc, forming a disaccharide β-d-GlcA-(1→3)-β-d-
GlcNAc-(1→4) repeat sequence [107, 108]. HA is the ligand of the overexpressed CD44 receptor in NSCLC 
cell lines [109]. Mattheolabakis et al. [110] demonstrated that HA-modified polymer nanoparticles (PNPs) 
can improve the accumulation of DOX in tumor cells and improve antitumor efficiency through their 
involvement in the regulation of inflammation, tumor development, and healing processes [110]. Hsiao et 
al. [111] discussed the potential of HA-modified nanoparticles in improving apoptosis, cytotoxicity, and 
anti-proliferation of A549 lung cancer cells.

Trophoblast cell-surface antigen 2 antibody

Human trophoblast cell-surface antigen 2 (Trop2) is a transmembrane glycoprotein with an extracellular 
EGF-like and thyroglobulin 1 repeat domain [112], which is overexpressed in various solid tumors, 
including NSCLC [113]. High expression of Trop2 is associated with the growth and proliferation of cancer 
cells and the low survival rate of patients. Trop2 can recognize specific ligands, such as insulin like growth 
factor-1 (IGF-1), cyclin D1 [114], and protein kinase C (PKC) [115], participate in intracellular signal 
transduction pathways, and regulate the cell cycle [116]. Trop2 can directly bind to IGF-1 to weaken the 
activation of AKT/b-catenin and ERK mediated by IGF-1R signaling. Currently, various novel antibody-drug 
conjugates have been developed, such as sacituzumab govitecan [117] and datopotamab deruxtecan [118], 
and the coupling of human anti-Trop2 antibodies with cytotoxic drugs will promote the development of 
tumor therapeutic targets.
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NDDSs in targeted lung cancer therapy
The current clinical approach to treating lung cancer primarily involves surgery, radiotherapy, and 
chemotherapy (Table S1, Table 1). However, due to the lack of effective early detection methods, most lung 
cancer cases are diagnosed at advanced stages involving local tumor invasion or distant metastases. In 
cases where surgery is not suitable, chemotherapy becomes an option [119]. Conventional chemotherapy in 
NSCLC has limitations, including lower efficacy, higher toxicity, increased recurrence rates, and lower five-
year survival rates [120]. Precision treatment options for NSCLC currently include a combination of local 
radiotherapy, targeted therapy, and immunotherapy [121, 122]. Immunotherapy, particularly anti-PD1 
antibodies such as nivolumab and pembrolizumab, in combination with platinum-based chemotherapy has 
shown promising results and has been approved by the FDA to improve survival rates in advanced NSCLC 
patients [123].

Table 1. Clinically approved nanoparticle-based medicines for lung cancer therapy

Name Active ingredient Formulation Clinical phase First approval
Genexol-PM PTX Polymeric micelle Approved 2007
Abraxane PTX Albumin Approved 2012
Lipusu PTX Liposome Approved 2019
AGEN1181 αCTLA-4 Phospholipid I/II phase 2020
PEP02 Irinotecan Liposome II phase 2015
DM-CHOC-PEN DNA alkylator Lipoid (chloroethyl-cyclohexyl-nitrosourea) I/II phase 2021
NKTR-214 IL-2 PEG I/II phase 2022

In the field of oncology, nanotechnology has emerged as a potential solution to enhance cancer 
diagnosis and treatment. Nanotechnology enables targeted delivery of imaging agents and therapeutic 
drugs to tumor tissues, offering advantages over conventional systemic drug delivery [124]. NDDSs have 
garnered extensive attention for their ability to facilitate the development of more effective treatments, 
reduce systemic toxicity, and improve pharmacokinetics [125]. NDDSs have shown potential in the 
diagnosis, treatment, and prognosis of lung cancer. NDDSs offer several advantages, including an increased 
drug loading capacity, improved pharmacokinetic properties, passive or active targeting mechanisms for 
site-specific delivery, synergistic effects of multiple therapeutic agents, minimized drug resistance, and 
controlled release to enhance efficacy while reducing toxicity. Passive targeting of tumors is based on the 
EPR effect, where small nanoparticles can accumulate specifically in tumor sites through tumor vascular 
leakage and lymphatic drainage [126]. Nanoparticles can also interact with TAMs, enhancing their uptake 
within tumors [127]. Nanoparticles can be surface modified with high-affinity ligands that bind to receptors 
overexpressed by cancer cells, enabling targeted delivery to tumor cells and metastatic lesions. Stimulus-
responsive crosslinked nanomedicines in the field of cancer treatment and have shown advances in 
circumventing the drawbacks of conventional drug delivery systems [128] and are classified into three 
categories based on crosslinking strategies, including built-in, on-surface, and interparticle crosslinking 
nanomedicines. Due to the stimulus-responsive crosslinkages, stimulus-responsive nanomedicines are 
capable of maintaining robust stability during systemic circulation. They also respond to particular tumoral 
conditions to induce a series of dynamic changes, such as changes in size, surface charge, targeting moieties, 
integrity, and imaging signals. These characteristics allow them to efficiently overcome different biological 
barriers and substantially improve drug delivery efficiency, tumor-targeting ability, and imaging 
sensitivities. In addition, micro/nanorobots are propelled by chemical reactions, physical fields, and 
biological systems and can be manipulated by chemotaxis, remote magnetic guidance, and light [129]. 
Moreover, self-adaptive nanomaterials, which respond to signal changes emitted from the tumor site, might 
realize spatiotemporally and quantitatively specific release of drugs. Self-adaptive nanomaterials exhibit 
self-regulation and self-feedback capabilities, and their properties, such as charge, size, and shape, undergo 
on-demand transformation in response to specific stimuli. Compared to conventional nanomaterials, self-
adaptive nanomaterials successfully decrease the frequency of drug release within normal tissues and 



Explor Med. 2024;5:280–311 | https://doi.org/10.37349/emed.2024.00221 Page 289

maintain drug concentrations in tumor cells for a more extended period, thus promoting rational clinical 
drug application [130]. Clinical use of nanoparticles has demonstrated improved efficacy and reduced 
adverse effects through adjustment of the systemic biodistribution of drugs, allowing higher doses of 
therapeutic agents to reach tumor sites. For example, the FDA-approved albumin-bound PTX drug 
Abraxane showed superior overall response rates and fewer adverse events than generic PTX in NSCLC 
patients [131].

Research progress in nanomaterials for lung cancer treatment involves organic nanomaterials 
[liposomes, polymers, covalent organic framework (COF)], inorganic nanomaterials [gold, paramagnetic 
iron oxide, silica, carbon quantum dots, metal organic framework (MOF)], and biomimetic nanomaterials 
(albumin, biofilm materials, Figure 2). The size and composition of nanoparticles significantly influence 
their bioavailability in vivo, allowing them to pass through specific barriers while limiting uptake in healthy 
tissues [132, 133]. In summary, nanotechnology, particularly NDDSs, holds great promise for improving 
lung cancer treatment outcomes. Ongoing research and development of various nanomaterials contribute 
to advancing the field of lung cancer therapy.

Figure 2. Nano-based drug delivery system for lung cancer therapy. Created by BioRender. NPs: nanoparticles

Liposomes

Liposomes are spherical bilayer vesicles formed by the self-assembly of cholesterol and phospholipids 
[134] and are structurally similar to biological membranes and capable of efficiently integrating 
hydrophobic and hydrophilic drugs into hydrophobic cavities and lipid bilayers. Liposomes as drug carriers 
have the following advantages: (i) nontoxic, safe, and biocompatible carrier materials; (ii) high drug loading 
efficiency, good stability, and a prolonged drug half-life; (iii) increased drug uptake by tumor cells; (iv) easy 
surface modification, which can leverage the difference between cancerous and healthy tissues to increase 
the residence of liposomes at the target site, enhance targeting and reduce the cytotoxicity of drugs [135]; 
and (v) stimulus-responsive control of drug release that can be achieved by different mechanisms, such as 
pH and enzymes, depending on the physicochemical properties of the drug to increase efficacy and reduce 
toxicity. Since cationic liposomes can self-assemble with nucleic acids, many studies have used cationic 
liposomes to deliver genes to the lung [136]. The main materials used in the preparation of liposomes are 
soybean phosphatidylcholine, cholesterol, mannitol, lipoic acid-modified polypeptides, phosphoglycerate 
mutase, and citraconic anhydride-grafted poly-L-lysine, among others. Zhang et al. [137] developed a 
liposomal curcumin dry powder inhaler for the treatment of primary lung cancer. The uptake of curcumin 
liposomes by A549 cells was markedly greater and faster than that of free curcumin. Zhang et al. [138] 

https://www.biorender.com/
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designed a tumor cell membrane-liposome hybrid bionanoparticle surface modified with a peptide 
targeting MMP-9 with a negatively charged citric anhydride-grafted poly-L-lysine intermediate layer for 
pH-triggered charge reversal and codelivery of phosphoglycerate mutase 1 small interfering RNA (PGAM1 
siRNA) and docetaxel (DTX) to achieve synergistic drug effects of metabolic therapy and chemotherapy. Hu 
et al. [139] fused tumor-derived nanovesicles with liposomes with a homologous targeting capability and 
bionic hybrid nanovesicles loaded with DOX [DOX-loaded biomimetic hybrid nanovesicles (DOX@LINV)], 
which improved the immunosuppressive TME by infiltrating effector immune cells.

Drug resistance affects the prognosis and survival of lung cancer patients. The mechanisms associated 
with MDR in lung cancer include drug inactivation, DNA repair, elevated drug release from transporters 
such as ATP-binding cassette (ABC) transporter proteins and apoptosis defects [140]. The main protein 
transporter involved in pump resistance is the MDR-associated protein [141], an efflux pump that reduces 
intracellular drug levels. Off-pump resistance is mainly due to defective apoptosis, and the Bcl-2 protein is a 
major player in this mechanism [142, 143]. A dual liposome system consisting of adriamycin and siRNA 
blocked the MDR of Bcl-2 [144]. Delivery of DOX, Bcl-2, and MDR-associated protein 1 via liposomes 
markedly reduced MDR by stimulating caspase-dependent apoptotic pathways [145]. Li et al. [146] 
delivered oxygen and erlotinib through aptamer-modified liposome complexes to reverse hypoxia-induced 
drug resistance in lung cancer.

Solid lipid-based nanoparticles

The use of solid lipid-based nanoparticles (SLBNs) in drug delivery has been studied extensively. The two 
types of SLBNs are solid lipid nanoparticles (SLNs) and NLCs [147]. SLNs can be understood as nanoemul-
sions in which the liquid lipid nuclei of the droplets are replaced by solid lipid nuclei, such as triglycerides, 
glycerides, fatty acids, palmitates, and steroids. They are usually prepared using high-pressure homogeniz-
ation or microemulsification techniques [148] and have colloidal properties, a suitable size, a high surface 
area-to-volume ratio, good surface properties, physical stability for controlled drug release and easy dif-
fusion, improved stability in the presence of light, humidity, and chemically unstable drugs, and good 
biocompatibility. SLNs are mainly composed of the materials squalene, soybean phosphatidylcholine, 
Tween-80, 1,2-dioleoyloxy-3-trimethylammonium-propane (DOTAP), distearoylphosphatidylethano-
lamine-PEG2000 (DSPE-PEG2000), stearyl amine, monostearin, and poly-lactide-co-glycolide. More active 
component spaces of NLCs can be obtained by mixing solid and liquid lipids in different proportions to form 
different lipid matrices [149]. NLCs show better gas atomization characteristics, better accumulation in the 
lung, good stability, and biological activity integrity [150]. NLC-based drug delivery systems clinical applica-
tions are further advanced by various excipients, such as solid lipids, liquid-phase lipids, and surfactants 
[151], and the inclusion of various cationic components, target/ligand linkers, and bioactive genetic 
material [152].

The combination of EGFR TKIs and other chemotherapy drugs in NSCLC is a feasible strategy to 
overcome EGFR TKI resistance [153]. Garbuzenko et al. [154] developed NLC systems targeting luteinizing 
hormone-releasing hormone (LHRH) in prepared NSCLC cells to form inhaled LHRH-NLC-siRNA-PTX 
nanoparticles and tested them using human lung cancer cells with different sensitivities to gefitinib (EGFR 
inhibitor) and in situ NSCLC mouse models. Yang et al. [155] prepared a lung inhalation microsphere 
system for SLNs based on stearic acid-loaded afatinib (AFT) spheres [porous microspheres (pMS)] to form 
AFT-SLN-PTX-pMS nanoparticles. Due to the large surface area of pMS and the high initial burst release that 
facilitates the rapid release of PTX, this pulmonary inhalation microsphere system has the advantages of 
long-lasting performance, a high lung deposition rate, rapid release of PTX, sustained release of AFT, and 
the synergistic effects of AFT and PTX and can be used for the treatment of EGFR TKI-resistant NSCLC. Soni 
et al. [156] investigated the construction of gemcitabine (GEM)-loaded mannosylated SLNs with superior in 
vivo pharmacokinetics for effective intracellular delivery to lung cancer cells with the help of SLNs with 
slow controlled release and a high drug loading rate to improve drug stability, reduce toxicity, enhance 
efficacy, and improve pharmacokinetics. Moreover, targeted mannose-based SLNs (M-SLNs) were taken up 
by lung cancer cells through mannose receptor-mediated endocytosis, enhancing the cytotoxic effect on 
tumor cells and reducing cytotoxicity to normal cells.
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Metallic and inorganic nanoparticles

Metallic and inorganic nanoparticle as drug delivery carriers have the advantages of a large surface area-to-
volume ratio, surface modification of organic materials, being biological molecules, and no immunogenicity. 
A variety of metal and inorganic nanoparticles have been used for the treatment of NSCLC, including 
magnetic nanoparticles (MNPs), MOFs, gold nanoparticle, graphene oxide (GO) nanoparticle, quantum dots, 
plasma, mesoporous silica (MS) nanoparticles (MSNs), and black phosphorus (BP), among others. Their 
physical and chemical properties are related to size, shape, and composition. The diverse structures and 
characteristics of nanoparticles provide scaffolds for drug treatment and imaging [157], enhanced stability 
and bioavailability of anticancer drugs, and sustained control of drug release rates, enabling efficient and 
targeted treatment of cancer.

Metallic nanoparticle as drug carriers have the advantages of a high drug-carrying capacity, functional 
modifiability, and nonimmunogenicity. Such nanoparticle include Au nanoparticle, Cu nanoparticle, MnO2 
nanoparticles, Fe3O4 MNPs, and MOFs, which are used as drug delivery carriers for lung cancer therapy. 
Particle-based pulmonary drug delivery has considerable potential to provide inhalable therapeutics for 
local or systemic applications. Designing particles with enhanced aerodynamic properties can improve lung 
distribution and deposition, thereby enhancing the efficacy of capsule-based inhaled drugs. As nanocarriers 
for the inhalation of small-molecule drugs and macromolecular drugs, metallic phenol capsules can increase 
the thickness of the capsule shell by repeatedly depositing thin films on the template, thereby increasing 
the aerodynamic diameter and accurately controlling the deposition of the capsule shell in a human lung 
model [158].

An important therapeutic approach based on metal materials is magnetic nanotherapy, a noninvasive 
method of tumor ablation based on MNPs acting on their own or with anticancer drugs and external 
magnetic fields, where drug-laden nanoparticles can be guided into the circulatory system and targeted 
tissues under the action of an alternating magnetic field [159, 160]. Iron oxide nanoparticles are the most 
commonly used nanoparticles for MNP therapy due to their degradability, biocompatibility, and 
superparamagnetic effect [161]. Iron ions can catalyze the generation of free radicals from hydrogen 
peroxide through the Fenton-type reaction, which can damage mitochondria, lipids, proteins, DNA, and 
other structures in tumor cells and induce apoptosis [162, 163]. Tseng et al. [164] showed that recombinant 
adeno-associated virus serotype 2 (AAV2) chemically conjugated with iron oxide nanoparticles 
(approximately 5 nm) has a remarkable ability to be remotely guided under a magnetic field. Transduction 
is achieved with microscale precision. Furthermore, a gene for the production of the photosensitive protein 
KillerRed was introduced into the AAV2 genome to enable photodynamic therapy (PDT) or light-triggered 
virotherapy. In vivo animal experiments revealed that magnetic guidance of “ironized” AAV2-KillerRed 
injected through the tail vein in conjunction with PDT significantly decreased tumor growth via apoptosis. 
Sadhukha et al. [165] investigated the synthesis of inhalable superparamagnetic iron oxide (SPIO) 
nanoparticle (SPIONs) targeting EGFR, and the results confirmed that magnetic thermotherapy using SPIO-
targeted nanoparticles significantly inhibited tumor growth in vivo and that magnetic thermotherapy has 
strong potential as a treatment modality for NSCLC. Huang et al. [166] combined porous iron oxide 
nanoagents (PION)-mediated promoting photothermal therapy (PTT) with CRYBG3 long noncoding RNA 
(lncRNA)-mediated gene therapy, where PIONs were used as a magnetic nanoagent for magnetic resonance 
imaging (MRI) and photoacoustic imaging (PAI), and a high cancer cell killing effect was observed in vitro 
and in vivo.

Functional modification of nanocarriers can enable integration of multiple functions into NDDSs to 
achieve targeted drug delivery, diagnostic imaging, and combined therapy. Ma et al. [167] used an 
integrated therapeutic and diagnostic targeting nanoplatform for lung cancer in situ spinal metastases for 
the first time (Figure 3). Au@MOF was coated with MSNs and connected with the photosensitizer 
indocyanine green (ICG) to alter the modified targeting peptide dYNH on Au@MOF@MS-ICG. The dYNH 
peptide was combined with the transmembrane receptor erythropoietin, which produces human 
hepatocellular A2 (EphA2) [168], and the outer layer was modified with polyacrylic acid (PAA) to enable 
pH-sensitive codelivery of cisplatin and the alpha-selective PI3K inhibitor BYL719@Au@MOF@MS-ICG, 
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representing an integrated therapeutic nanoplatform combining dual drugs, strong targeting, and 
photothermal effects. In addition, imaging modalities are expected to serve as an efficient and safe smart 
drug delivery system for the treatment of in situ metastases.

Figure 3. Synthesis of BCAMMD modified bivalve nanoparticles (BCAMM) loaded with BYL719-cisplatin. BCAMM: BYL719&cis-
platin@Au@MOF@MS-ICG; BCAMMD: dYNH-targeted peptide; Cis: cisplatin; CTAB: hexadecyltrimethylammonium chloride 
solution; MI: methylimidazole; TEOS: tetraethyl orthosilicate
Note. Reprinted with permission from “Rationally integrating peptide-induced targeting and multimodal therapies in a dual-shell 
theranostic platform for orthotopic metastatic spinal tumors” by Ma Y, Chen L, Li X, Hu A, Wang H, Zhou H, et al. Biomaterials. 
2021;275:120917 (https://linkinghub.elsevier.com/retrieve/pii/S0142961221002738). © Elsevier 2021.

Inorganic nonmetallic nanoparticles have unique physicochemical properties and biological effects; for 
instance, GO nanoparticle can effectively load and deliver antigens, show the potential to activate the 
immune system, have easily modified surfaces, and are widely used as carriers and immune adjuvants 
[169]. BP nanoparticle are a new type of phosphorus-source nanoparticle, and BP quantum dots (BPQDs) 
and BP hydrogels (BPHs) are both common forms BP. Due to their high photothermal conversion efficiency, 
excellent PTT and PDT and good biocompatibility, BP-based drug delivery systems have received attention 
and are widely used [170].

Quantum dot-based fluorescence strategies can improve sensing performance and enhance sensitivity 
to targets due to their optical and photophysical properties and adjustable emission range [171, 172]. 
Moreover, integrating organic dyes and quantum dots into peptide substrates provides a well-controlled 
and scalable strategy for protease-sensing fluorescence resonance energy transfer (FRET) systems. Wu et 
al. [173] constructed a nitrogen-rich carbon dot (NCD)-mediated DNA nanostructure self-assembly 
strategy. Due to the excellent photoluminescence and photodynamic properties of NCDs, NCDs can 
isothermally mediate DNA nanopillar self-assembly in a magnesium-free manner in large temperature and 
pH ranges and combine with KRAS siRNA for the treatment of KRAS mutant NSCLC. Studies have shown 
that the combination of NCDs and programmable DNA nanostructures is a powerful strategy for endowing 
DNA nanostructures with new functions, and the nanoplatform has phototherapy potential.

MSNs are one of the most widely used inorganic nanoparticles, with the advantages of large pore size, 
an adjustable particle size and pore diameter, a large specific surface area, a high density of silanol groups 

https://linkinghub.elsevier.com/retrieve/pii/S0142961221002738
https://linkinghub.elsevier.com/retrieve/pii/S0142961221002738
https://linkinghub.elsevier.com/retrieve/pii/S0142961221002738
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on the surface, favorable functional modification, excellent biocompatibility, and can induce reactive oxygen 
species generation [174], rendering MSNs ideal carriers for adsorbable drug molecules [175, 176]. Zhou et 
al. [177] prepared a novel injectable thermosensitive hydrogel based on MSNs and thermosensitive 
hydrogels for the delivery of the oral targeted drug erlotinib to achieve targeted sustained release. The 
erlotinib-loaded hydrogel composite (ERT@HMSNs/gel) complex showed a longer drug retention time in 
and around the tumor, enhancing the efficacy of NSCLC. This development also provides ideas for the 
design and preparation of nanodelivery systems for local antitumor therapy. Cheng et al. [178] developed a 
d-a-tocopheryl PEG 1000 succinate (TPGS)-functionalized polydopamine-coated MSN drug delivery 
systems for pH-responsive release of DOX with ideal particle size, drug loading, and drug release 
characteristics and long cycle advantages. Drug-resistant A549 cells were used to detect the cytotoxicity 
and cellular uptake of nanoparticle. NDDSs showed outstanding performance in overcoming MDR.

PNPs

PNPs are amphiphilic polymers self-assembled by hydrophobic interactions in aqueous solution to form a 
thermodynamically stable system. Hydrophobic small molecules are trapped within PNPs by covalent 
bonding or interaction with the hydrophobic core, and hydrophilic drugs can be loaded by physical action 
or chemical coupling to effectively carry antitumor drugs and remain stable in vivo [179]. PNPs are easy to 
prepare, have good biocompatibility, low toxicity, structural stability, chemical modification abilities, and 
multifunctional groups that can bind specific ligands or antibodies [180] to achieve the advantages of 
targeted drug delivery, and are widely used in drug delivery systems [181, 182], showing strong potential 
for chemotherapy and gene therapy. CRLX101 is a self-assembled nanoparticle containing PEG-poly(lactic 
acid)-encapsulated CPT that delivers CPT to cancer cells while significantly reducing systemic exposure and 
is currently in phase II clinical trials [183]. Tseng et al. [184] reported the exploitation of NSCLC tumor-
secreted lactate in designing an acid-degradable nanoparticle containing the acyclic acetal component of 
oxidized HA for viral release. The virus, lactate oxidase (LOX), and hexanoamide were conjugated with 
aldehyde-HA through reductive amination (Figure 4) [185]. The lower pH can facilitate virus internalization 
into cells due to pH-sensitive proteases of the viral capsid. Site-specific delivery was demonstrated by viral 
transduction in the NSCLC tumor-secreted lactate microenvironment, offering an avenue for improving 
general or drug-resistant NSCLC treatment outcomes. The exploitation of tumor lactate production in 
designing a hypoxia-responsive carrier self-assembled from HA conjugated with 6-(2-nitroimidazole)
hexylamine for localized release of recombinant AAV2 has also been reported. The carrier is loaded with 
LOX and is permeable to small molecules such as the lactate that accumulates in a tumor [186]. Wang et al. 
[185] developed hierarchically responsive nanomedicine (HRNMs) self-assembled via a cyclic Arg-Gly-Asp 
(RGD) peptide-coupled triblock copolymer, poly(2-(hexamethyleneimino)ethyl methacrylate)-poly(oligo-
(ethylene glycol) monomethyl ether methacrylate)-poly reduction-responsive CPT (PC7A-POEG-PssCPT). In 
circulation, RGD peptides are shielded by the POEG coating, and HRNMs achieve effective tumor 
aggregation through passive targeting. Upon reaching the tumor site, the acidic microenvironment induces 
hydrophobic to hydrophilic conversion of PC7A, and RGD peptides are exposed, enhancing tumor retention 
and intracellularization. Furthermore, HRNMs show effective tumor targeting, potent antitumor effects, and 
reduced systemic toxicity. Such HRNMs are expected to be used to enhance chemotherapeutic delivery. 
Zhong et al. [187] designed a series of biodegradable PEG, guanidine-functionalised polycarbonate and 
polypropylene cross-ester (PEG-PGCx-PDLAy) triblock copolymers as chemotherapeutic agents that self-
assemble into micellar nanoparticles against a variety of cancer cell lines, which killed cancer cells through 
a nonapoptotic mechanism involving significant vacuolization and subsequent membrane disruption 
without inducing resistance to multiple treatments at sublethal doses of the polymer. Iyer et al. [188] 
developed glutathione (GSH)-responsive polyurethane nanoparticles loaded with cisplatin, which showed 
GSH dose-dependent cisplatin release and significantly reduced in vitro survival of A549 lung cancer cells 
following the action of GSH-responsive polyurethane nanoparticles (GPUs) compared to that achieved with 
equal concentrations of free cisplatin. In vivo biodistribution studies showed that fluorescently labeled 
GPUs clustered in lung tumor areas and that tumor suppression was significantly improved following tail 
vein injection in mice. Wang et al. [189] constructed poly(lactide-co-glycolide)-PEG-FITC-poly(ethylene 
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glycol)-amine-MSC (PLGA-PEG-FITC-MSC) nanoparticles loaded with DTX. MSCs can be used as lung-
targeting drug carriers [190] and exhibit naturally high tumor affinity [191], and the MSC/nanoparticles 
(MSC/NP) system can effectively target drugs to lung tissue. The tumor inhibition efficiency of the 
MSC/nanoparticles/DTX (MSC/NP/DTX) system was similar to that of nanoparticles/DTX (NP/DTX) but at 
only 1/8 of the DTX dose. Chen et al. [192] prepared pH and redox dual-responsive methoxy PEG-disulfide 
bond-poly(beta-amino ester)-PLGA (mPEG-SS-PBAE-PLGA) nanoparticle-loaded platinum-curcumin 
complexes, which facilitated intracellular release and enhanced synergistic anticancer effects.

Figure 4. Schematic diagram of programmed administration of HRNMs. (1) HRNMs have high stability in the circulation, (2) due 
to their nanoparticle size and neutral POEG surface; therefore, they can effectively accumulate, within the tumor through EPR 
effects. (3) In the TME, the acidic pH leads to charge switching and exposure of RGD peptides by HRNMs, which enhances 
tumor retention and (4) intracellularization. (5) Thereafter, intracellular GSH will trigger the release of CPT from cancer 
chemotherapy
Note. Reprinted with permission from “Hierarchical tumor microenvironment-responsive nanomedicine for programmed delivery 
of chemotherapeutics” by Wang S, Yu G, Wang Z, Jacobson O, Tian R, Lin LS, et al. Adv Mater. 2018:e1803926 (https://
onlinelibrary.wiley.com/doi/10.1002/adma.201803926). © WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 2018.

Many noninvasive technologies, such as near-infrared (NIR) and ultrasound therapy, have been applied 
to the treatment of cancer. Compared with lasers, which have a limited penetration depth, ultrasound 
energy can penetrate deeper tumor tissues in a safe range, which is more suitable for the treatment of lung 
cancer. Wang et al. [193] proposed a novel NIR light-triggered photothermal polymer containing DAP-F 
complexed with a reduction-sensitive amphiphilic polymer, P1, to form F-nanoparticles with photothermal 
effects that can encapsulate Pt(IV) prodrugs via P1 and bind F-nanoparticles to Pt-nanoparticles to 
construct the final nanosystem F-Pt-nanoparticles, which inhibited DNA repair, effectively overcame 
cisplatin resistance, and suppressed tumors (Figure 5).

https://onlinelibrary.wiley.com/doi/10.1002/adma.201803926
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https://onlinelibrary.wiley.com/doi/10.1002/adma.201803926
https://onlinelibrary.wiley.com/doi/10.1002/adma.201803926


Explor Med. 2024;5:280–311 | https://doi.org/10.37349/emed.2024.00221 Page 295

Figure 5. Schematic illustration of the preparation of the F-Pt-NPs and possible mechanism involved in inhibition of cisplatin 
resistance under NIR laser irradiation. PDX: patient-derived xenograft
Note. Reprinted with permission from “A systematic strategy of combinational blow for overcoming cascade drug resistance via 
NIR-light-triggered hyperthermia” by Wang L, Yu Y, Wei D, Zhang L, Zhang X, Zhang G, et al. Adv Mater. 2021;33:e2100599 
(https://onlinelibrary.wiley.com/doi/10.1002/adma.202100599). © Wiley-VCH GmbH 2021.

Biomimetic nanoparticles

Biomimetic nanoparticles have the morphology, surface properties, and size of natural constituent 
structures (e.g., exosomes) that evade clearance by the immune system, an enhanced targeting ability to 
deliver drugs to target cells or tissues, good biocompatibility, improved therapeutic efficiency, and reduced 
toxic side effects and are widely studied as drug delivery systems. With hybridization, nucleic acid 
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nanoassemblies, including DNA and RNA nanostructures, can be applied to enhance diagnosis and 
therapeutic effects [194]. Kuerban et al. [195] obtained outer-membrane vesicles (OMVs) from attenuated 
Klebsiella pneumonia and prepared DOX-loaded OMVs, which were efficiently transported into A549 cells 
and presented substantial tumor growth inhibition with favorable tolerability and pharmacokinetic 
profiles. The appropriate immunogenicity of OMVs enables the recruitment of macrophages to the TME, 
which might synergize with DOX in vivo. Li et al. [196] found that inhibition of exosome secretion may be an 
effective strategy to overcome the antagonistic effects of TKIs and chemotherapeutic agents. Zhong et al. 
[197] constructed three different DNA nanostructures and found that DNA nanostructures could 
significantly enhance the intracellularization of platinum drugs, thereby increasing their anticancer activity 
not only against conventional A549 cells but also more importantly against cisplatin-resistant (CisR) cancer 
cells (A549 CisR), thus effectively inhibiting tumor growth, suggesting that DNA nanostructures are 
effective carriers for platinum precursor drug delivery to counter chemotherapy resistance.

Proteins, such as albumin [198] and high-density lipoproteins (HDLs) [199], and silk fibroin 
nanoparticles (SFNPs) [200] have been used to treat NSCLC, and their amino and carboxylic acid fractions 
can be chemically modified to actively target cancer cells. Among all types of polypeptide nanoparticles, 
polycystine 2 (PCys2)-based nanoparticles have drawn increasing attention due to their unique properties. 
On the one hand, uniform nanogels can be easily obtained through the crosslinking of two active centers 
during polymerization without an additional self-assembly step. On the other hand, the Cys2-based 
nanoparticles always showed reduction responsiveness owing to the inherent disulfide bond. With the 
development of advanced diagnostic and therapeutic technologies, multifunctional PCys2-based 
nanoparticles were achieved via rational construction of the polymer structure [201]. Elgohary et al. [202] 
developed inhalable human serum albumin (HSA) nanocomposites for the combined delivery of etoposide 
(ETP) and berberine (BER) to lung tumors, which reduced toxicity, prevented drug resistance, and 
enhanced cytotoxicity and internalization in A549 lung cancer cells. Cell and cell membrane-derived 
nanobiocarriers are being developed to design new drug delivery strategies for the treatment of various 
malignant tumors, including lung cancer. At present, the sources of this biological nanocarrier mainly 
include red blood cells, white blood cells, platelets, MSCs, cancer cells, and exosomes. Cell-based 
nanobiocarriers have good biocompatibility, multimolecular and intrinsic targeting abilities, a long cycle 
ability, and good host biointegration and can be used for the treatment of various tumors. Cell membrane-
derived microparticles (MPs) are important mediators of intercellular information transfer. Guo et al. [203] 
investigated the therapeutic potential of tumor cell-derived MPs (TMPs) in patients with malignant pleural 
effusion (MPE) from lung cancer. The safety, immunogenicity, and clinical activity of TMPs-methotrexate 
(TMPs-MTX) were validated in a human study in 11 patients with MPE in advanced lung cancer, showing a 
significant reduction in tumor cells and CD163+ macrophages and stimulation of IL-2 release from CD4+ T 
cells and IFN-γ release from CD8+ T cells. Ye et al. [198] used neutrophil-mediated nanoparticles to promote 
tumor photothermal therapy by modifying Au nanorods (AuNR) with bovine serum albumin (BSA) coupled 
to RGD (AuNRBR) and then encapsulated them in neutrophils (AuNRBR/N). Neutrophils can efficiently 
cross epithelial cells and exhibit enhanced cytotoxicity against Lewis cells under in vitro laser irradiation. In 
addition, AuNRBR/N showed stronger targeting to tumor tissue than cell-free nanoparticles, and the 
enhanced tumor-homing efficiency of AuNRBR/N and the release of AuNRBR from neutrophils facilitated 
further deep tissue dissemination, contributing to tumor growth inhibition and improved survival in PTT.

Conclusions
Patients with lung cancer often face low overall survival, progression-free survival, and quality of life. 
Current interventions for lung cancer primarily target advanced stages of the disease characterized by signs 
of tumor metastasis and recurrence, which are influenced by genetic mutations, drug resistance, and 
epithelial-mesenchymal transition (EMT) processes [204]. While new therapies combined with traditional 
drugs have shown some clinical success, NDDSs have become increasingly important in clinical trials and 
applications. NDDSs offer the potential to enhance treatment efficacy and reduce side effects by modulating 
the biodistribution and pharmacokinetics of drugs. However, despite promising results, further research is 
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necessary to develop more effective nanoplatforms. Currently, passive targeting based on the EPR effect is a 
common approach for tumor uptake of nanobased agents [205]. However, the EPR effect is typically less 
prominent in humans than in animal models [206]. To address the limited tumor uptake, nanoparticles can 
be designed to actively target tumor tissue-specific overexpressed proteins using a combination of active 
and passive targeting strategies, facilitating receptor-mediated endocytosis. This active targeting strategy 
aims to simultaneously target primary and metastatic tumor cells [207], as metastatic cells may not exhibit 
strong EPR effects in the early stages.

However, many remaining challenges require considerable research. While NDDSs have shown 
promise in overcoming drug resistance in lung cancer treatment, the exact mechanisms by which these 
systems can effectively deliver drugs to tumor cells and bypass drug resistance mechanisms are still not 
well understood. Further research is needed to elucidate the specific interactions between nanoparticle-
based drug carriers and tumor cells regarding drug resistance. In addition, although many different types of 
nanoparticles have been used for lung cancer therapy, a consensus on the optimal characteristics of 
nanoparticle design for effective drug delivery is still lacking. Research is needed to determine the influence 
of nanoparticle size, shape, surface properties, and targeting ligands on the efficiency of drug delivery to 
lung tumor cells. Understanding the pharmacokinetics, biodistribution, and clearance of NDDSs is crucial 
for their successful translation into clinical use. More studies are needed to investigate the fate of 
nanoparticles in the lung, including their distribution within tumor tissues, metabolism, and excretion 
pathways. While NDDSs hold great promise, their potential toxicity and safety concerns need to be 
thoroughly investigated. Systemic administration of nanoparticles for lung cancer therapy may lead to off-
target effects and accumulation in healthy tissues, which could have adverse toxicological effects. Further 
research is needed to assess the safety profiles of different nanoparticle formulations and develop 
strategies to minimize potential toxicity. Preclinical studies have explored active targeting strategies using 
EGFR-targeting peptides [165, 208], HA [209], folic acid [210, 211], Tf, and other ligands in lung cancer 
models. Despite significant advancements in the preclinical development of NDDSs for lung cancer therapy, 
very few have been successfully translated to clinical use. However, clinical trials involving these active 
targeting agents in lung cancer patients are still underway. Considering the heterogeneity of tumors, 
employing multiple ligands targeting different cell surface receptors is preferable [212]. Alternatively, 
specific targeted agents can be designed based on the individualized driver mutation characteristics of 
different subtypes of lung cancer considering the TME and controlling drug release to minimize off-target 
toxicity and enhance precision therapeutic effects. Research gaps exist in terms of the scalability, 
manufacturing reproducibility, and clinical feasibility of these systems. Further studies are needed to 
address the challenges related to large-scale production and clinical translation of effective nanodrug 
delivery platforms for lung cancer treatment. Currently, clinical treatment with nanomedicines in lung 
cancer patients shows promise. However, further improvements in their structures and the combination of 
multiple NDDS approaches are necessary to provide multidrug treatment options and achieve optimal 
NDDSs with superior functional and structural properties, high reproducibility, simple preparation 
methods, and low costs.
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