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Abstract
Aim: Quantitative analysis of brain single photon emission computed tomography (SPECT) perfusion imaging 
is dependent on normative datasets that are challenging to produce. This study investigated the combination 
of SPECT neuroimaging from a large clinical population rather than small numbers of controls. The authors 
hypothesized this “population template” would demonstrate noninferiority to a control dataset, providing a 
viable alternative for quantifying perfusion abnormalities in SPECT neuroimaging.
Methods: A total of 2, 068 clinical SPECT scans were averaged to form the “population template”. Validation was 
three-fold. First, the template was imported into SPECT brain analysis software, MIMneuro®, and compared 
against its control dataset of 90 individuals through its region and cluster analysis tools. Second, a cohort 
of 100 cognitively impaired subjects was evaluated against both the population template and MIMneuro®’s 
normative dataset to compute region-based metrics. Concordance and intraclass correlation coefficients, 
mean square deviations, total deviation indices, and limits of agreement were derived from these data to 
measure agreement and test for noninferiority. Finally, the same patients were clinically read in CereMetrix® 
to confirm that expected perfusion patterns appeared after comparison to the template.
Results: MIMneuro®’s default threshold for normality is ± 1.65 z-score and this served as our noninferiority 
margin. Direct comparison of the template to controls produced no regions that exceeded this threshold 
and all clusters identified were far from statistically significant. Agreement measures revealed consistency 
between the softwares and that CereMetrix® results were noninferior to MIMneuro®, albeit with proportional 
bias. Visual analysis also confirmed that expected perfusion patterns appeared when individual scans were 
compared to the population template within CereMetrix®.
Conclusions: The authors demonstrated a population template was noninferior to a smaller control dataset 
despite inclusion of abnormal scans. This suggests that our patient-based population template can serve as 
an alternative for identifying and quantifying perfusion abnormalities in brain SPECT.
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Introduction
The application of functional neuroimaging, specifically with neuronuclear single photon emission computed 
tomography (SPECT), presents a number of advantages for brain diagnostics. First, brain SPECT demonstrates 
perfusion abnormalities (hypo or hyperperfusion) in disorders such as Alzheimer’s disease (AD) [1] and 
traumatic brain injury (TBI) [2] that may not be evident in conventional structural imaging. Second, brain 
SPECT is more freely available in the office setting compared to the alternative neuronuclear modality, positron 
emission tomography (PET). Unlike PET, SPECT studies do not require close proximity to a cyclotron, thus 
improving patient access. Third, brain SPECT studies are cheaper than PET scans by at least half the cost [3]. 
These characteristics make SPECT an attractive modality for diagnostics of aberrant brain function.

Evaluation of any diagnostic imaging study begins with visual observations of what is different from 
normal. This approach proves challenging in SPECT since perfusion levels naturally vary in different regions 
of the brain and among different people [4, 5]. Thus, purely visual interpretation of such scans risks negative 
impacts of subjectivity and interobserver variability.

The concept of quantitative analysis of brain SPECT scans has been well established for decades [6-9] 
but clinical grade software programs are relatively recent by comparison. Such programs are important 
for maximizing the utility of SPECT in clinical practice. Tools now incorporate analyses that quantify the 
magnitude of deviation from normal perfusion [10-13], reducing subjectivity and improving consistency and 
speed. The American College of Radiology (ACR) guidelines for brain SPECT reflect this shift by recommending 
quantitative assessment and comparison to normative datasets [5], although it is widely recognized that true 
values of physiologic properties like normal perfusion are impossible to measure with absolute certainty 
[14-16]. Normative datasets serve, at best, as surrogates for an already ambiguous truth.

SPECT normative datasets are challenging to produce [17]. Brain SPECT scans are only recommended 
for certain medical conditions [5] and would unnecessarily expose healthy individuals to radioactivity [18]. 
Other barriers include difficulty accessing a large representative sample of control subjects and the potentially 
prohibitive financial burden of data collection. For these reasons, companies and research groups that have 
invested in their own normative datasets are often reluctant to share with others who seek to quantitatively 
evaluate SPECT brain data. This keeps the size of commercial FDA-cleared normative datasets rather small, 
ranging from only 35 to 90 subjects [13, 19-21], and limits competition from other groups seeking to improve 
SPECT quantitative tools.

We propose an alternative to traditional normative datasets by creating a “population template” that 
combines SPECT brain scans from a large number of clinical patients instead of a small number of healthy 
individuals. The outgoing impressions for these patients included TBI, toxic exposure, neuropsychiatric 
disorders, and others, resulting in a large heterogeneous dataset with no single defining perfusion pattern. We 
hypothesized that this template would prove noninferior to a smaller control dataset and therefore provide a 
viable substitute for use in identifying and quantifying brain perfusion abnormalities in SPECT scans.

Materials and methods
Subjects
All retrospective data analysis was done in accordance with Institutional Review Board approval 
(IntegReview IRB Certificate CHDB112019). In partnership with CereHealth Corporation, a total of 3, 047 
of their most recent patients were assessed for inclusion in either the population template or a dataset for 
template validation. At the time of this study, this convenience sample was the full extent of data available for 
retrospective research purposes.
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All scans were acquired between the years of 2006 and 2019 from individuals across the United States 
and were processed according to protocols set forth by the ACR and the supervising imaging clinic, CereScan. 
Subjects were excluded if they had not consented their scan to be used in research (n = 424), if their scan 
data was missing (n = 188), if they did not complete a baseline scan (n = 26), if their scan was of questionable 
quality (n = 10), or if they had broken protocol (n = 4).

CereScan had labelled each scan with one or more outgoing diagnostic impressions derived from the 
reading radiologist’s report. These classifications were not ground truth but permitted useful grouping of 
subjects. These labels were utilized to identify a dataset for template validation.

Given the existing literature on SPECT in the differential diagnosis of dementias [22-24], subjects were 
filtered for the following labels assigned to their scan’s outgoing impressions: dementia, AD, frontotemporal 
dementia (FTD), cognitive impairment, and neurodegenerative processes. Subjects also had these labels if 
such processes could not be ruled out during the read.

The filtered dataset contained 200 scans with five duplicates. We verified each subject’s inclusion by 
reviewing their clinical data, if available, for signs of cognitive impairment in their reported symptoms, 
history, and cognitive assessment scores. Due to changes in data collection over time, we found that recent 
patient records were consistently more complete. For this reason and resource constraints for radiologist 
reads, only 100 of the most recently acquired scans were chosen for inclusion in this cognitively impaired 
cohort (43 females and 57 males, mean age ± SD, 63.83 ± 11.98 years, Table 1). No duplicates were included.

For the population template, the remaining set of scans were filtered to exclude subjects with gross 
structural abnormalities (n = 61), no recorded outgoing diagnostic impressions (n = 16), and duplicates (n = 
50). The final cohort of 2, 068 subjects contained 879 women and 1, 189 men with ages ranging from 4 to 83 
years (mean ± SD, 37.22 ± 17.29 years, Table 1, Figure 1). The most common diagnostic impressions assigned 
to these patients were TBI (n = 1, 768), anxiety disorder (n = 1, 046), and mood disorder (n = 1, 018) with a 
high incidence of comorbidity evident in the population (84%).

Table 1. Summary characteristics about the subjects contained in MIMneuro®’s control dataset, the population template, and the 
cognitively impaired cohort. While the age range, mean, and standard deviation of MIMneuro®’s controls were reported in [13], 
the median was not provided. The race/ethnicity of their controls were also not disclosed

MIMneuro®

controls
Population
template

Cognitively
impaired cohort

Age Mean ± SD
Median
Range

43.88 ± 15.48 years
Unknown
10-89 years

37.22 ± 17.29 years
37 years
4-83 years

63.83 ± 11.98 years
65 years
22-87 years

Sex Male
Female

39
51

1, 189
879

57
45

Race/
Ethnicity

White 0 1, 493 78
Hispanic or Latino 0 125 1
Black or African American 0 57 3
Asian 0 18 0
American Indian or Alaskan Native 0 9 0
Middle Eastern or North African 0 2 0
Native Hawaiian or other Pacific Islander 0 1 1
Two or more of the above 0 50 1
Unknown 90 313 16

Total number of subjects 90 2, 068 100
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Population template generation
All SPECT scans were performed within the guidelines set forth by the ACR [5]. Patients were instructed to 
abstain from certain medications for 24-48 h including stimulants, opiates, barbiturates, and benzodiazepines, 
as well as caffeine, alcohol, over-the-counter medications containing caffeine, and illicit drugs. Patients were 
also directed to abstain from nicotine for 10 h prior to the scan.

Fifteen min prior to tracer injection, each patient was made comfortable in a dimly lit and quiet room 
while an intravenous line was placed. The patient was asked to rest with sound dampening headphones on 
and their eyes closed. After 15 min, radiopharmaceutical technetium-99m hexamethylpropyleneamine oxime 
(Tc99m-HMPAO) was injected into the bloodstream via the intravenous line. Uptake into the brain occurred 
within two min [4, 25]. After injection, each patient rested in the same room for an additional five minutes. 
Approximately one hour later, the patient was placed supine on the camera bed and their head held still by a 
cloth strap across the forehead. Scan times varied among patients but typically lasted 20 to 30 min to collect 
a minimum of approximately 5 million counts.

Segami Corporation’s Oasis software (Version 1.9.4.9) was used for image preprocessing. Each scan was 
reconstructed using filtered back projection and a Butterworth filter. Chang attenuation correction [26] was 
performed on all images. All raw sinograms and linograms were inspected by a nuclear medicine technologist 
for evidence of motion and corrected, as needed, using the built-in Cedars-Sinai MoCo application [27]. 
Brain volumes were then manually masked with ellipses by a nuclear medicine technologist to exclude 
non-neural uptake.

After masking, each reconstructed volume was sent through CereMetrix® software (Version 1.0) 
for registration. This software first thresholded the volume using Otsu’s method [28]. The original and 
thresholded versions were then mapped to the Montreal Neurological Institute (MNI) standard single subject 
brain template [29] using an affine transformation with 12 degrees of freedom. The optimal transformation 
for each volume was determined using the advanced mattes mutual information metric (MI) and adaptive 

Figure 1. Age distribution of subjects in population template versus the controls contained within MIMneuro®
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stochastic gradient decent. The transformation with the higher MI was then applied to the original data and 
image intensities were normalized to the average intensity value of the whole brain [30].

After processing, all scans were exported and a script averaged the intensity values of each voxel across 
all scans to compute the population template. That is, every voxel in the template represented an average of 
2, 068 normalized intensity values at the same location in each scan (Figure 2).

Template comparison to normative database
Ideally, the population template would be evaluated against true values or a reference standard, such as a 
phantom or digital reference object, to assess the technical performance associated with its use in quantifying 
brain perfusion abnormalities [31]. To our knowledge, no publicly available physical or digital SPECT 
reference standard has been widely accepted to model normal cerebral perfusion [15]. Therefore, validation 
of the population template is restricted to comparisons against softwares containing normative databases.

For this study, the population template was imported into quantitative SPECT brain analysis software, 
MIMneuro® (Version 6.7.12), and mathematically compared against its normative dataset through their 
region and cluster analysis tools. This is one of the largest control datasets in commercial software, 
containing Tc99m-HMPAO SPECT brain scans from 90 healthy volunteers (51 females and 39 males, mean 
age = 43.88 ± 15.48 years, Table 1, Figure 1) [13, 19]. A custom MIMneuro® workflow was built to import 
the template, normalize voxel intensities to the mean value for the whole brain, register the template to 
its proprietary brain atlas, and identify regions of interest (ROI) at varying levels of anatomical detail. 
MIMneuro®’s registration tool, BrainAlignTM, has been previously described [32]. The workflow then 
compared each voxel of the template to the same voxel in the controls. A z-score was calculated at every voxel 
to quantify its difference from the controls and generate a z-score map. Voxel z-scores were then aggregated 
and averaged according to their anatomical region assignment and 95% confidence intervals (CIs) were 
calculated and corrected for multiple comparisons using the conservative Bonferroni method [33, 34]. The 
region results were assessed for noninferiority using MIMneuro®’s default threshold for normality, 1.65 
z-score, as the noninferiority margin [13]. CIs within this margin would indicate that the population template 
was noninferior to MIMneuro®’s normative dataset [31].

MIMneuro®’s default voxel analysis was then used to identify clusters of abnormal voxels that may span 
region borders. The following parameters dictated how the software identified clusters: P-value, minimum 
volume, and minimum z-score. The P-value determined the statistical significance level of the cluster, or the 
likelihood that a cluster was truly abnormal rather than occurring by chance [13]. The P-value parameter was 

Figure 2. Axial cross section of the population template generated from 2, 068 clinical scans acquired at standard SPECT 
resolution and processed as described for display in the MNI single subject space
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set to one to identify all clusters, regardless of statistical significance. The minimum volume parameter, which 
defined the minimum size of the cluster in milliliters, was set to zero to return clusters of any size. Finally, 
only voxels that met the minimum z-score requirement were eligible for clustering. We set this parameter to 
1.65 z-score to correspond to MIMneuro®’s default threshold for normality and our noninferiority margin.

ROI analysis against template and normative database
The template and controls are both intended to serve as comparison datasets for quantifying deviations 
from typical perfusion in individual scans. However, each software deploys proprietary processing prior 
to this calculation that could impact the final output of perfusion measurements even if the population 
template was found to be sufficiently close to MIMneuro®’s normative. Therefore, assessing agreement 
between the z-score data generated from the template and controls within their respective softwares would 
further support whether measurements made from the template are noninferior to those made from the 
normative dataset.

The population template was integrated into a research-only instance of the CereMetrix® image 
processing pipeline that performed registration and normalization of image voxel values (previously 
described in “Population template generation” section) and calculated a z-score at every voxel to quantify 
its difference from the population template. This pipeline also designated an anatomical label for each voxel 
corresponding to a region contained within the automatic anatomical labeling atlas (AAL) [35].

The cohort of 100 cognitively impaired subjects was used to compare z-score results generated by 
CereMetrix® using the population template to those by MIMneuro® using its controls. Their scans were 
acquired, reconstructed, and motion corrected in Oasis software and then separately processed in both 
CereMetrix® and MIMneuro® for spatial registration, intensity normalization, and z-score calculation, as 
previously described. All average region z-scores were exported for analysis in Python™ or Microsoft® Excel.

Since the regions identified by each software were not identical due to registration and atlas 
differences, smaller regions were grouped into left and right internal or lobar (frontal, temporal, parietal) 
structures (Table 2). MIMneuro® automatically addresses this issue by offering the lobar structures as 
individual regions, but it does not do so for internal structures. Instead, a script was written to average the 
average z-scores for these regions from both MIMneuro® and CereMetrix® data. However, to generate data 
for CereMetrix® lobar structures consistently with MIMneuro®, the script only performed one average across 
the voxels of the smaller structures. This resulted in eight measurements per patient for a final total of 800 
measurements from each software.

Agreement metrics often assume that the data are normally distributed. All data and their differences 
between softwares were graphed on probability plots to confirm this prior to the calculation of the following 
scaled and unscaled agreement indices: concordance and intraclass correlation coefficients [CCC, ICC(3,1)] 
[36, 37], mean squared deviations (MSD) [31], total deviation indices (TDI) [38], and Bland-Altman plots 
with limits of agreement (LOA) [39, 40]. 95% CIs were calculated for each metric [34, 36], corrected for 
multiple comparisons using the Bonferroni method [33], and, where appropriate, compared against the 
noninferiority margin.

Visual reads after template comparison
Despite the objectivity and standardization that region-based quantitative metrics bring to brain SPECT 
reads, the spatial distribution of perfusion abnormalities is limited when voxel z-scores are averaged across 
ROIs. It is the spatial distribution of voxel z-scores that is most utilized by physicians performing individual 
brain SPECT reads, not ROI-averaged metrics. Agreement between softwares, present or not, bears no merit 
on the clinical utility of the population template if established voxel-wise perfusion patterns do not appear. 
Accurate reads are dependent on them.

To assess this, a single reader (CR) with extensive experience in reading Tc99m-HMPAO SPECT brain scans 
was trained on the CereMetrix® platform and given access the clinical and imaging data for each deidentified 
subject in the cognitively impaired cohort. This reader categorized his observed impressions of perfusion 
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patterns as normal, AD, FTD, Lewy body dementia, TBI, vascular dementia, mixed dementia, indeterminate, 
or other psychiatric pattern. These categorizations were then compared with the original impressions 
generated by six readers using other SPECT analysis platforms. Concordance was evaluated in Microsoft® 
Excel using Krippendorff’s alpha statistic for multiple raters with 95% CIs [41, 42] and interpreted like other 
kappa statistics: 0.0-0.2 as slight agreement, 0.21-0.4 as fair agreement, 0.41-0.6 as moderate agreement, 
0.61-0.8 as substantial agreement, and over 0.8 as nearly perfect agreement [43]. Substantial to near perfect 
agreement between readers’ impressions, despite the use of different softwares and comparison datasets, 
would support the clinical utility of the population template for individual patient analysis.

Table 2. Summary of regions that were aggregated to create four metrics for each patient of the cognitively impaired cohort

MIMneuro® CereMetrix®

Frontal lobe Frontal lobe Anterior orbital gyrus
Gyrus rectus
Inferior frontal gyrus, pars opercularis
Inferior frontal gyrus, pars orbitalis
Inferior frontal gyrus, pars triangularis
Lateral orbital gyrus
Medial orbital gyrus
Medial orbitofrontal cortex
Middle frontal gyrus
Olfactory cortex
Posterior orbital gyrus
Precentral gyrus
Superior frontal gyrus
Superior frontal gyrus, medial part
Supplementary motor area

Parietal lobe Parietal lobe Angular gyrus
Inferior parietal lobule
Postcentral gyrus
Precuneus
Superior parietal lobule
Supramarginal gyrus

Temporal lobe Temporal lobe Fusiform gyrus
Heschl’s gyrus
Inferior temporal gyrus
Middle temporal gyrus
Middle temporal pole
Superior temporal gyrus
Superior temporal pole

Internal structures Amygdala
Caudate
Cingulate gyrus
Globus pallidus
Hippocampus
Parahippocampal gyrus
Putamen
Thalamus

Amygdala
Anterior cingulate gyrus
Caudate
Globus pallidus
Hippocampus
Middle cingulate gyrus
Parahippocampal gyrus
Posterior cingulate gyrus
Putamen
Thalamus
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Results
Template comparison to normative database
The average z-score deviations from the controls for each region of MIMneuro®’s atlas are given in Table 3 
while their summary statistics and histogram of their distribution are in Figure 3. No regions of the population 
template fell outside ± 1 z-score, 84% were within ± 0.5 z-score, and no CIs exceeded the noninferiority 
margin of ± 1.65 z-score.

Voxel analysis produced nine clusters that met the criteria described previously (Table 4). The largest 
cluster (11.53 mL) had an average z-score of 1.9 and spanned areas of the left lateral temporal and occipital 
lobes (Figure 4). This cluster and all others had low statistical significance (P ≥ 0.93).

Table 3. Mean z-scores and 95% CIs quantifying the population template’s deviation from MIMneuro®’s controls for every region 
in MIMneuro®’s proprietary atlas

Region Mean
[95% CI]

Region Mean
[95% CI]

Region Mean
[95% CI]

Region Mean
[95% CI]

Amygdala (L) -0.28
[-0.34, -0.22]

Inf. frontal 
gyrus (L)

-0.43
[-0.45, -0.41]

Middle orbital 
gyrus (L)

-0.09
[-0.11, -0.07]

Retrosplenial 
area (L)

0.09
[0.02, 0.16]

Amygdala (R) -0.84
[-0.93, -0.75]

Inf. frontal 
gyrus (R)

-0.45
[-0.47, -0.43]

Middle orbital 
gyrus (R)

-0.31
[-0.37, -0.25]

Retrosplenial 
area (R)

-0.06
[-0.10, -0.02]

Angular gyrus 
(L)

0.33
[0.31, 0.35]

Inf. frontal 
gyrus, pars 
opercularis (L)

-0.57
[-0.61, -0.52]

Middle 
temporal gyrus 
(L)

0.49
[0.46, 0.52]

Rolandic 
operculum (L)

-0.37
[-0.40, -0.34]

Angular gyrus 
(R)

0.13
[0.11, 0.15]

Inf. frontal 
gyrus, pars 
opercularis (R)

-0.59
[-0.62, -0.56]

Middle 
temporal gyrus 
(R)

0.46
[0.43, 0.49]

Rolandic 
operculum (R)

-0.55
[-0.59, -0.51]

Anterior 
cingulate gyrus 
(L)

0.15
[0.13, 0.17]

Inf. frontal 
gyrus, pars 
orbitalis (L)

-0.37
[-0.42, -0.32]

Nucleus 
accumbens (L)

-0.04
[-0.07, -0.01]

Subcallosal 
area (L)

-0.12
[-0.20, -0.04]

Anterior 
cingulate gyrus 
(R)

0.22
[0.19, 0.25]

Inf. frontal 
gyrus, pars 
orbitalis (R)

-0.25
[-0.31, -0.19]

Nucleus 
accumbens (R)

-0.33
[-0.43, -0.23]

Subcallosal 
area (R)

-0.13
[-0.21, -0.05]

Anterior orbital 
gyrus (L)

-0.03
[-0.05, -0.01]

Inf. frontal 
gyrus, pars 
triangularis (L)

-0.32
[-0.35, -0.29]

Occipital lobe 
(L)

0.56
[0.54, 0.58]

Sup. cerebellar 
peduncle (L)

0.18
[0.09, 0.27]

Anterior orbital 
gyrus (R)

-0.12
[-0.20, -0.04]

Inf. frontal 
gyrus, pars 
triangularis (R)

-0.41
[-0.45, -0.37]

Occipital lobe 
(R)

0.32
[0.31, 0.33]

Sup. cerebellar 
peduncle (R)

0.22
[0.15, 0.29]

Basis pontis 0.06
[0.05, 0.07]

Inf. medial 
frontal gyrus 
(L)

-0.51
[-0.55, -0.47]

Olfactory 
cortex (L)

-0.04
[-0.06, -0.02]

Sup. frontal 
gyrus (L)

0.26
[0.24, 0.28]

Brain stem 0.07
[0.06, 0.08]

Inf. medial 
frontal gyrus 
(R)

-0.86
[-0.91, -0.81]

Olfactory 
cortex (R)

-0.42
[-0.57, -0.27]

Sup. frontal 
gyrus (R)

0.26
[0.24, 0.28]

Caudate (L) -0.10
[-0.13, -0.07]

Inf. occipital 
gyrus (L)

0.48
[0.43, 0.53]

Orbitofrontal 
region (L)

-0.18
[-0.29, -0.16]

Sup. medial 
frontal gyrus 
(L)

-0.11
[-0.13, -0.09]

Caudate (R) -0.15
[-0.20, -0.10]

Inf. occipital 
gyrus (R)

0.28
[0.24, 0.32]

Orbitofrontal 
region (R)

-0.41
[-0.45, -0.37]

Sup. medial 
frontal gyrus 
(R)

-0.13
[-0.15, -0.11]

Cerebellar 
hemisphere (L)

0.59
[0.57, 0.61]

Inf. temporal 
gyrus (L)

0.63
[0.59, 0.67]

Paracentral 
lobule (L)

-0.17
[-0.19, -0.15]

Sup. occipital 
gyrus (L)

0.53
[0.50, 0.56]

Cerebellar 
hemisphere (R)

0.29
[0.28, 0.30]

Inf. temporal 
gyrus (R)

0.11
[0.10, 0.12]

Paracentral 
lobule (R)

-0.12
[-0.14, -0.10]

Sup. occipital 
gyrus (R)

0.51
[0.48, 0.54]

Cerebellar 
vermis

0.51
[0.48, 0.54]

Insula (L) -0.35
[-0.38, -0.32]

Parahippo-
campal gyrus 
(L)

0.20
[0.16, 0.24]

Sup. parietal 
lobule (L)

0.24
[0.22, 0.26]
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Table 3. Mean z-scores and 95% CIs quantifying the population template’s deviation from MIMneuro®’s controls for every region 
in MIMneuro®’s proprietary atlas (continued)

Region Mean
[95% CI]

Region Mean
[95% CI]

Region Mean
[95% CI]

Region Mean
[95% CI]

Cerebellum 0.45
[0.44, 0.46]

Insula (R) -0.83
[-0.87, -0.79]

Parahippo-
campal gyrus 
(R)

-0.20
[-0.23, -0.17]

Sup. parietal 
lobule (R)

0.12
[0.10, 0.14]

Cingulate gyrus 
(L)

0.09
[0.07, 0.11]

Lateral orbital 
gyrus (L)

-0.12
[-0.15, -0.09]

Parietal lobe 
(L)

0.15
[0.14, 0.16]

Sup. temporal 
gyrus (L)

0.34
[0.30, 0.38]

Cingulate gyrus 
(R)

0.08
[0.06, 0.10]

Lateral orbital 
gyrus (R)

-0.35
[-0.42, -0.28]

Parietal lobe 
(R)

-0.03
[-0.04, -0.02]

Sup. temporal 
gyrus (R)

0.13
[0.09, 0.17]

Cuneus (L) 0.23
[0.20, 0.26]

Lateral 
temporal lobe 
(L)

0.44
[0.42, 0.46]

Pons 0.08
[0.07, 0.09]

Supplementary 
motor area (L)

-0.03
[-0.05, -0.01]

Cuneus (R) 0.2
[0.17, 0.23]

Lateral 
temporal lobe 
(R)

0.25
[0.23, 0.27]

Pontine 
tegmentum

0.14
[0.12, 0.16]

Supplementary 
motor area (R)

-0.01
[-0.02, 0.00]

Frontal lobe (L) -0.02
[-0.03, -0.01]

Lingual gyrus 
(L)

0.65
[0.61, 0.69]

Postcentral 
gyrus (L)

0.18
[0.16, 0.20]

Supramarginal 
gyrus (L)

0.31
[0.29, 0.33]

Frontal lobe (R) -0.08
[-0.09, -0.07]

Lingual gyrus 
(R)

0.13
[0.11, 0.15]

Postcentral 
gyrus (R)

-0.03
[-0.05, -0.01]

Supramarginal 
gyrus (R)

-0.05
[-0.08, -0.02]

Fusiform gyrus 
(L)

0.76
[0.73, 0.79]

Medial orbital 
gyrus (L)

-0.29
[-0.33, -0.25]

Posterior 
cingulate gyrus 
(L)

-0.01
[-0.03, 0.01]

Temporal lobe 
(L)

0.39
[0.37, 0.41]

Fusiform gyrus 
(R)

0.08
[0.07, 0.09]

Medial orbital 
gyrus (R)

-0.54
[-0.61, -0.47]

Posterior 
cingulate gyrus 
(R)

0.00
[-0.03, 0.03]

Temporal lobe 
(R)

0.10
[0.09, 0.11]

Globus pallidus 
(L)

0.04
[-0.01, 0.09]

Medial 
temporal lobe 
(L)

0.17
[0.14, 0.20]

Posterior 
orbital gyrus (L)

-0.17
[-0.20, -0.14]

Temporal 
operculum (L)

-0.57
[-0.62, -0.52]

Globus pallidus 
(R)

-0.3
[-0.35, -0.25]

Medial 
temporal lobe 
(R)

-0.28
[-0.31, -0.25]

Posterior 
orbital gyrus 
(R)

-0.59
[-0.68, -0.50]

Temporal 
operculum (R)

-0.57
[-0.63, -0.51]

Gyrus rectus 
(L)

-0.40
[-0.49, -0.31]

Medulla 0.11
[0.08, 0.14]

Precentral 
gyrus (L)

0.23
[0.20, 0.26]

Temporal pole 
(L)

-0.27
[-0.31, -0.23]

Gyrus rectus 
(R)

-0.46
[-0.56, -0.36]

Midbrain 0.04
[0.02, 0.06]

Precentral 
gyrus (R)

0.07
[0.04, 0.10]

Temporal pole 
(R)

-0.40
[-0.44, -0.36]

Heschl gyrus 
(L)

0.03
[-0.02, 0.08]

Middle 
cerebellar 
peduncle (L)

0.01
[0.00, 0.02]

Precuneus (L) -0.21
[-0.23, -0.19]

Thalamus (L) 0.70
[0.66, 0.74]

Heschl gyrus 
(R)

-0.32
[-0.39, -0.25]

Middle 
cerebellar 
peduncle (R)

0.01
[0.00, 0.02]

Precuneus (R) -0.23
[-0.25, -0.21]

Thalamus (R) 0.47
[0.43, 0.51]

Hippocampus 
(L)

0.11
[0.06, 0.16]

Middle frontal 
gyrus (L)

0.21
[0.19, 0.23]

Primary visual 
cortex (L)

0.42
[0.39, 0.45]

Whole brain 0.10
[0.10, 0.10]

Hippocampus 
(R)

-0.45
[-0.50, -0.40]

Middle frontal 
gyrus (R)

0.41
[0.39, 0.43]

Primary visual 
cortex (R)

0.35
[0.32, 0.38]

Inf. cerebellar 
peduncle (L)

0.11
[-0.10, 0.32]

Middle occipital 
gyrus (L)

0.72
[0.68, 0.76]

Putamen (L) 0.07
[0.05, 0.09]

Inf. cerebellar 
peduncle (R)

0.06
[-0.10, 0.22]

Middle occipital 
gyrus (R)

0.37
[0.35, 0.39]

Putamen (R) -0.47
[-0.51, -0.43]
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Table 4. Summary statistics for clusters identified in population template using MIMneuro® voxel analysis. Parameters were a 
P-value of 1 minimum volume of 0 mL, and minimum z-score of 1.65

Statistic Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8 Cluster 9

Mean 1.90 1.87 -1.85 -1.66 -1.67 -1.67 -1.74 -1.71 1.66

Standard deviation 0.21 0.14 0.16 0.01 0.01 0.01 0.04 0.03 0.00

Median 1.84 1.85 -1.81 -1.66 -1.67 -1.67 -1.72 -1.71 1.66

Minimum 1.65 1.65 -2.22 -1.67 -1.68 -1.69 -1.78 -1.74 1.66

Maximum 2.65 2.19 -1.65 -1.65 -1.66 -1.65 -1.69 -1.67 1.66

Volume (mL) 11.53 2.62 1.67 0.10 0.08 0.05 0.04 0.02 0.02

P-value 0.93 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00

Figure 3. Histogram of region mean z-scores and their summary statistics from comparison of population template to 
MIMneuro® controls
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ROI analysis against template and normative database
Probability plots first confirmed that the data and their differences were approximately normally distributed 
(Figures S1-3). Scaled and unscaled agreement indices are summarized for each region in Table 5. The first 
scaled metric calculated was the CCC, a dimensionless quantity that can vary from -1 to 1, similar to Pearson’s 
correlation coefficient. When interpreted the same way, the CCCs generated from our data indicated poor to 
moderate agreement between the softwares, with CCC CIs ranging from 0.339 to 0.888 [34]. The ICC(3,1) is 
related to the CCC but instead evaluates consistency between softwares such that their measurements are 
allowed to differ with some amount of error. In our data, the ICC CIs ranged from 0.555 to 0.905, indicating 
moderate to good consistency between the softwares [44]. Both the CCC and ICC are dimensionless metrics 
and were therefore not compared to the noninferiority margin.

MSDs are the expected squared differences between the softwares’ measurements. Satisfactory agreement 
is reached when MSDs are less than or equal to the square of the noninferiority margin, or 2.72 [37]. The 95% 
CIs for MSDs in our data were much less than that, ranging from 0.044 to 0.231.

Table 5. Scaled (CCC, ICC) and unscaled (MSD, TDI) agreement metrics and 95% CIs calculated between CereMetrix® data 
and MIMneuro® data

Region CCC [95% CI] ICC(3,1) [95% CI] MSD [95% CI] TDI95% [95% CI]

Frontal lobe L 0.730
[0.607, 0.819]

0.790
[0.661, 0.874]

0.064
[0.044, 0.094]

0.498
[0.409, 0.604]

R 0.608
[0.464, 0.720]

0.758
[0.613, 0.853]

0.097
[0.070, 0.137]

0.613
[0.503, 0.743]

Parietal lobe L 0.820
[0.718, 0.888]

0.841
[0.738, 0.905]

0.067
[0.046, 0.099]

0.508
[0.418, 0.617]

R 0.795
[0.679, 0.873]

0.818
[0.703, 0.891]

0.076
[0.052, 0.113]

0.542
[0.446, 0.659]

Temporal lobe L 0.500
[0.339, 0.633]

0.718
[0.555, 0.828]

0.168
[0.123, 0.231]

0.805
[0.663, 0.970]

R 0.760
[0.643, 0.843]

0.767
[0.626, 0.859]

0.068
[0.046, 0.101]

0.512
[0.421, 0.623]

Internal structures L 0.806
[0.718, 0.868]

0.812
[0.694, 0.888]

0.110
[0.075, 0.163]

0.652
[0.536, 0.792]

R 0.814
[0.729, 0.875]

0.821
[0.708, 0.893]

0.086
[0.058, 0.127]

0.574
[0.472, 0.697]

Figure 4. The largest cluster (P = 0.93) identified in the population template using MIMneuro® cluster analysis tools spanned 
portions of the left temporal and occipital lobes. This image depicts the left hemisphere surface projection of the population 
template with the cluster highlighted in green
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TDI is the absolute difference in measurements that achieves a desired coverage probability. In our 
data, TDI CIs computed to achieve 95% coverage probability range from 0.409 to 0.970 z-score. Satisfactory 
agreement is achieved when the TDI is less than the noninferiority margin, which was true here.

While unscaled indices (MSD, TDI) suggested CereMetrix® results were substantially noninferior to 
MIMneuro®, the scaled indices (CCC, ICC) did not support full agreement. Lines of equality showed this 
clearly; paired measurements between the softwares trend with the equality line but are scattered around it 
(Figures 5 and 6). CereMetrix® results do not exactly equal MIMneuro® results.

Figure 5. Frontal and parietal lobe equality plots between CereMetrix® and MIMneuro® data showing their scatter around the 
line of equality. The proportion of measurements where MIMneuro®’s z-score magnitude was greater than the corresponding 
CereMetrix® z-score magnitude is also given
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These differences between the softwares were evaluated with Bland-Altman plots and LOAs. The 
traditional horizontal LOA plots revealed proportional bias and slight heteroscedasticity that could not 
be remedied by recommended methods like ratios, percent differences, or log transformations (Figure 7). 
Therefore, simple linear regression was used to find the line of best fit and new LOAs (Figure 8) [39, 40, 
45, 46]. LOAs define the range where most differences between these softwares are expected to lie. This was 
true for our data, as 97-99% fell between the confidence bounds of these LOAs.

Figure 6. Temporal lobe and internal structures equality plots between CereMetrix® and MIMneuro® data showing their scatter 
around the line of equality. The proportion of measurements where MIMneuro®’s z-score magnitude was greater than the 
corresponding CereMetrix® z-score magnitude is also given
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Figure 7. Bland-Altman plots with horizontal LOAs and CIs for each region. While much of the data is contained within the LOAs, 
proportional bias is evident
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Figure 8. Bland-Altman plots with linear LOAs and CIs for each region accounting for proportional bias present in the data. 
Original mean and horizontal LOAs are represented by light gray dashed lines
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The largest single difference between the softwares was 1.017 z-score and occurred in the right parietal 
lobe. The largest systemic difference was in the left temporal lobe, with its average differences amounting to 
-0.32 z-score while the others ranged from -0.09 to 0.22 (Figure 7).

For each ROI, proportional bias manifested as a negative relationship between software differences 
and the mean of their values. This relationship was most pronounced in the frontal lobes and least in the 
parietal lobes. Since all differences were calculated by subtracting MIMneuro®’s value from CereMetrix®’s, 
the negative slope was caused by MIMneuro®’s z-score magnitude consistently exceeding CereMetrix®’s in 
61-84% of each region’s measurements (Figures 5 and 6).

LOAs were narrowest in the frontal lobes and widest in the right temporal lobe. This region also contained 
the most noticeable heteroscedasticity, with variability decreasing for positive means and increasing for 
negative means. No individual measurement differences exceeded ± 1.65 z-score and none of the LOA CIs 
extended beyond those boundaries when the mean z-score was between -2 and 2. Thus we are 95% confident 
that the difference in future measurements would also be within ± 1.65 z-score.

Visual reads after template comparison
Finally, the single reader fully agreed with the impressions documented by the original physicians in 80 of the 
100 cases in the cognitively impaired cohort. Krippendorff’s alpha was 0.72 with a 95% CI of 0.61 to 0.82. In 
10 cases, the reader agreed with a portion of the impressions but not the final conclusions. The remaining 10 
cases were completely discordant. Examples from the cohort analyzed in CereMetrix® presenting established 
perfusion patterns of AD, FTD, and TBI are given in Figures 9-11.

Figure 9. Surface projections of a brain SPECT scan rendered in CereMetrix® demonstrating temporal parietal hypoperfusion in 
a person with suspected AD
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Discussion
Quantitative metrics for brain SPECT analysis are dependent on normative datasets but building them is 
challenging and expensive. For such investment, the number of participants in commercial normative datasets 
is frequently small [13, 19-21], limiting age ranges and subsequent comparisons to single subjects [47]. This 
study created an alternative to traditional normative datasets using a large clinical collection of abnormal 
scans and established noninferiority to the controls contained in a commercial product.

Various normative datasets have characterized cerebral perfusion across SPECT tracers [25, 48, 49], 
age or sex groups [50-54], spatial normalization templates [55, 56], and processing or equipment [57-59], 
yet no work to our knowledge has ever compared control databases of commercial products to each other. 
Controls are essential to any study investigating abnormal perfusion patterns, but the diseased cohort 
typically homogenous by design. No other group has attempted to substantiate noninferiority between a 
heterogeneous cohort of abnormal brain SPECT scans and a set of controls.

Direct quantitative comparison demonstrated that the population template was noninferior to 
MIMneuro®’s normative dataset. Despite this, CereMetrix® and MIMneuro® softwares do not employ identical 
processing methods when comparing individual scans against their respective datasets. Investigation 

Figure 11. Surface projections of a brain SPECT scan rendered in CereMetrix® demonstrating asymmetric frontal and temporal 
hypoperfusion in a person with suspected TBI

Figure 10. Surface projection of a brain SPECT scan rendered in CereMetrix® demonstrating frontal hypoperfusion in a person 
with suspected FTD

https://doi.org/10.37349/emed.2020.00022


Explor Med. 2020;1:331-54 | https://doi.org/10.37349/emed.2020.00022 Page 348

of their quantitative results on individual subjects was warranted to ensure noninferiority was sustained 
following integration of the template into the CereMetrix® pipeline.

Metrics generated from both softwares’ region-based data gave mixed results. CCCs and ICCs indicated 
poor to moderate agreement yet moderate to good consistency between the software measurements, but 
these indices are difficult to interpret from a clinical perspective because they are dimensionless. MSDs and 
TDIs were calculated for this purpose and they suggested satisfactory agreement and noninferiority.

The equality and Bland-Altman plots revealed why the results from the scaled and unscaled indices were 
seemingly inconsistent. While the CereMetrix® and MIMneuro® measurements trend with each other, they 
were not equal and proportional bias existed between them. This bias was caused in part by the magnitude 
of MIMneuro®’s measurements often exceeding those of CereMetrix®. However, no individual differences 
or LOAs crossed the noninferiority margin. From a clinical perspective, this is satisfactory agreement and 
CereMetrix® quantification using the population template is noninferior to MIMneuro®’s quantification using 
their normative dataset.

Nonetheless, the bias observed in the Bland-Altman plots cannot be ignored. The mean of the 
measurements within our data did not exceed ± 2 z-score but it is clear that the LOAs may eventually cross 
the noninferiority margin as z-score magnitude grows. We find this unlikely for the broad anatomical 
regions analyzed here, but if the relationship were maintained for smaller structures, differences in z-score 
magnitude may be unsatisfactory. Our data cannot make any conclusions on this possibility. In practice, this 
bias means that quantitative results from MIMneuro® could be more extreme in magnitude and yield less 
specific perfusion pattern results than CereMetrix®.

MIMneuro®’s default threshold for normality is ± 1.65 z-score though some softwares use ± 2 z-score 
to increase the specificity of their results [60]. Within these bounds, the differences between the softwares 
are acceptable. However, from a clinical perspective, once an area of the brain crosses those thresholds, is it 
the z-score magnitude or the spatial pattern of abnormalities that dictates the diagnosis? If the former, the 
risk of software differences interfering with clinical decision making is legitimate. If the latter, increasing 
differences between the softwares at more extreme z-scores become immaterial.

Our work did not investigate how perfusion quantification is ultimately translated into diagnostic 
impression, but we did need to ensure consistency of clinical reads between the softwares. The secondary 
reads performed on the cognitively impaired cohort demonstrated substantial concordance between the 
single reader using the population template within CereMetrix® and the original impressions produced 
by six other readers. While not perfect, the observed Krippendorff’s alpha and percent agreement were 
consistent with or exceeded those previously recorded [61-65].

Direct comparison of our results to these dated works is complicated by key differences in SPECT 
scan presentation. All performed strictly two-dimensional visual analyses, at least two used films instead 
of computer displays for scan review [61, 62], and two reported using grayscale instead of applying 
color tables [61, 62]. These methodological choices now conflict with ACR guidelines for brain SPECT, 
which explicitly recommend computer display for three-dimensional viewing, color table adjustment, 
and quantitative analysis [5]. Additionally, Hellman’s and Pasquier’s work evaluated agreement in scan 
appearance or ROI severity ratings instead of the resulting diagnosis. Our study, like Stockbridge, Doran, 
and Barnes, measured agreement in diagnostic interpretation. Only Barnes introduced software assistance 
from Statistical Parametric Mapping, reporting a kappa of 0.5 between the readers. We are unaware of any 
recent work that has evaluated interobserver variability of diagnostic impression in Tc99m-HMPAO brain 
SPECT using quantitative software.

Our study achieved full concordance in 80% of the cases, partial concordance in 10%, and full discordance 
in 10%. While our statistics were conservative in considering partial concordance as disagreement, the data 
were more nuanced. In seven of the partial concordance cases, one reader proposed a mixed etiology of two 
conditions while the other selected one of those conditions exclusively. In the other three cases, one reader 
chose a primary condition but noted a second possibility while the other considered this second condition 
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to be the primary. This potentially highlights differences in reader interpretation rather than differences in 
perfusion pattern.

Such interobserver variability is not uncommon, particularly in the context of clinical cognitive 
impairment data [64]. Gold standard diagnoses for this patient group can only be determined 
postmortem [66], challenging all dementia research. Despite this, our data’s consistency with prior work 
indicates that established perfusion patterns for conditions like AD [67, 68], FTD [69, 70], and TBI [71, 72] 
were in fact observable after comparison to the population template.

Our work was limited by the inability to perform raw voxel comparisons between the population 
template and any other dataset of controls. Instead, direct comparisons were limited to the tools available 
through MIMneuro®’s interface. A number of methodological differences may have also broadly influenced 
our results, including acquisition and reconstruction equipment and parameters, processing algorithms, 
reference templates and atlases, and anatomical region parcellations. Notwithstanding these challenges, our 
work provides a unique, though seemingly incongruous, alternative to normative datasets.

It is possible that these results would change if a subset of the scans used for the template were selected 
or if more were added, particularly if the resulting dataset was biased toward a specific condition. Our 
approach depends on data heterogeneity. We presumed heterogeneity given the clinical nature of these 
scans and the array of conditions within it, but the diagnostic impression labels assigned to them do not 
guarantee heterogeneity across each image’s voxels. How to define and measure sufficient heterogeneity to 
model normal perfusion is an open question. Our only solution, for now, is to validate each newly generated 
template independently.

This is why future work will require similar validation of the population template when segmented by 
age or sex. It is well documented that perfusion patterns change over the course of our lifetimes [50-54] 
so the ability to compare individual patients to subjects within their age range is imperative. We will be 
challenged to find suitable comparison datasets that are representative of normal perfusion in limited age 
ranges, particularly for children and young adults. For example, though MIMneuro® contains one of the 
largest normative datasets, their young adult population only has three controls and may not constitute an 
ideal reference.

Conclusion
Quantifying image-derived metrics is of increasing interest across medical specialties but doing so for brain 
SPECT analysis is dependent on normative datasets that are challenging and expensive to produce. Instead 
of controls, we used clinical scans to create an alternative, the population template. We investigated its 
utility for perfusion measurement in three ways. First, direct analysis of the template against a normative 
dataset demonstrated it was noninferior both at the region and voxel level. Second, using a cohort of 
cognitively impaired individuals, z-score metrics derived from the template were also noninferior to those 
generated from the normative dataset. Finally, individual visual reads of the same cohort revealed that, 
following quantification using the template, the perfusion patterns observed were largely consistent with 
their original clinical read and established literature. Despite this study’s limitations and recommendations 
for future work, we conclude that the population template is a viable alternative to normative datasets for 
quantifying brain SPECT.

Abbreviations
AAL: automatic anatomical labelling atlas
ACR: American College of Radiology
AD: Alzheimer’s disease
CCC: concordance correlation coefficient
CI: confidence interval
FTD: frontotemporal dementia
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ICC(3,1): intraclass correlation coefficient (two way mixed, single measures, consistency)
LOA: limits of agreement
MI: mutual information
MNI: Montreal Neurological Institute
MSD: mean squared deviations
PET: positron emission tomography
ROI: regions of interest
SPECT: single photon emission computed tomography
TBI: traumatic brain injury
Tc99m-HMPAO: technetium-99m hexamethylpropyleneamine oxime
TDI: total deviation indices
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