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Abstract
Three-dimensional (3D) and four-dimensional (4D) printing have emerged as the next-generation 
fabrication technologies, covering a broad spectrum of areas, including construction, medicine, 
transportation, and textiles. 3D printing, also known as additive manufacturing (AM), allows the fabrication 
of complex structures with high precision via a layer-by-layer addition of various materials. On the other 
hand, 4D printing technology enables printing smart materials that can alter their shape, properties, and 
functions upon a stimulus, such as solvent, radiation, heat, pH, magnetism, current, pressure, and relative 
humidity (RH). Myriad of biomedical materials (BMMs) currently serve in many biomedical engineering 
fields aiding patients’ needs and expanding their life-span. 3D printing of BMMs provides geometries that 
are impossible via conventional processing techniques, while 4D printing yields dynamic BMMs, which are 
intended to be in long-term contact with biological systems owing to their time-dependent stimuli 
responsiveness. This review comprehensively covers the most recent technological advances in 3D and 4D 
printing towards fabricating BMMs for tissue engineering, drug delivery, surgical and diagnostic tools, and 
implants and prosthetics. In addition, the challenges and gaps of 3D and 4D printed BMMs, along with their 
future outlook, are also extensively discussed. The current review also addresses the scarcity in the 
literature on the composition, properties, and performances of 3D and 4D printed BMMs in medical 
applications and their pros and cons. Moreover, the content presented would be immensely beneficial for 
material scientists, chemists, and engineers engaged in AM manufacturing and clinicians in the biomedical 
field.
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Introduction
Three-dimensional (3D) printing, or additive manufacturing (AM), is a novel technology that fabricates 
materials on a print bed layer-by-layer. AM manufactures objects with simple to complex geometries using 
computer-aided design (CAD) models. AM can process various materials, such as polymers, hydrogels, 
ceramics, glass, metals, and other composites. Several AM-based techniques with different material 
processing technologies, including material extrusion [1–3], vat photopolymerization (VP) [4], powder bed 
fusion (PBF) [5], material jetting (MJ) [6], binder jetting (BJ) [7], directed energy deposition (DED) [8], and 
sheet lamination are currently in use.

Material extrusion employs delivering material through a print nozzle onto a print bed via heat [fused 
deposition modeling (FDM)] [2] or pressure [direct ink write (DIW)] [9, 10]. FDM processes thermoplastics, 
and the cooling process solidifies the final object-built layer-by-layer. DIW handles photocurable polymers 
and hydrogels, and ultraviolet (UV) curing allows hardening of the printed material on the bed. In VP, a 
photocurable polymer/resin is placed in a vat, a layer of the resin is placed on the build platform and UV 
laser [stereolithography (SLA) and two-photon lithography] rasters the required pattern on the resin 
surface, enabling crosslinking and solidifying the liquid resin, subsequently curing the layers. In digital light 
processing (DLP), another form of VP, a projected light source, is used to cure the entire layer completely. In 
PBF, a laser source or high-energy electron beam fuses polymer/metal powders together. The main PBF 
methods are direct-metal laser sintering (DMLS), electron beam melting (EBM), selective laser sintering 
(SLS), selective heat sintering (SHS), and selective laser melting (SLM). In MJ, photopolymers, waxes, and 
plastics are jetted (deposited) onto a build platform through a nozzle via either a continuous or drop-on-
demand method and the layers are cured under UV light. BJ involves spraying a liquid-type bonding agent 
onto the surface of metal/polymer powder, thereby bonding particles together to build the object layer by 
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layer. Other AM techniques include DED for polymers, metals, ceramics and sheet lamination for metals 
[ultrasonic AM (UAM)] and papers [laminated object manufacturing (LOM)] [4]. The main AM techniques 
currently active in manufacturing biomedical materials (BMMs) are FDM, SLA, SLS, PBF, DED, BJ, and 
bioprinting [11–13].

Four-dimensional (4D) printing is considered the next-generation advancement of AM technology, 
adding a fourth dimension as the time-dependent shape/functional change after printing. 4D printing 
processes smart materials capable of changing the shape or function upon exposure to certain stimuli such 
as humidity, temperature, light, pH of the medium, solvent, and magnetic and electric fields [14, 15]. Shape-
memory polymers (SMPs) play a key role in this context. AM technologies involved in 4D printed BMMs are 
mainly DIW, SLA, and multi-MJ, targeting applications in tissue engineering, drug delivery, medical devices, 
and diagnostics [16].

Both 3D and 4D printing technologies share similarities and differences. For instance, both materials 
are manufactured layer-by-layer and possess a length, width, and thickness. Moreover, both these 
technologies commonly use techniques such as extrusion, VP, jetting, DED, and PBF. However, one of the 
main differences between 3D and 4D manufacturing is the type of material used to process. Only 4D 
printing can change the shape, properties, and functions upon exposure to certain stimuli as opposed to 3D 
printing [14]. Consequently, 4D printing yields dynamic time-dependent stimuli-responsive materials, 
while 3D printed objects are static.

BMMs are broadly defined as biomaterials manufactured or processed to be utilized as medical devices 
or related components. BMMs include prostheses, reconstituted tissues, intravenous catheters, sutures, 
implants (prosthetic heart valves, ureteral stents, and hernia meshes), and scaffolds [15]. Currently, AM 
contributes to the manufacturing of BMMs mainly via polymers, ceramics, bioactive glass (BG), metals/
alloys, and composites for biomedical applications such as tissue engineering, drug delivery, porous metal 
implants, cell-materials interactions, wear degradation, bionanotechnology, and biopharmaceuticals [17].

Even though numerous studies have been reported on AM of BMMs, only limited information is 
available on 3D and 4D printed BMMs, their challenges, and prospects in different medical applications. 
Hence, the current review fills this knowledge gap for the first time by comprehensively covering the most 
recent 3D and 4D printing techniques, printed BMMs, and their applications in four distinct biomedical 
fields: tissue engineering, drug delivery, surgical and diagnostic tools, and implants and prosthetics. 
Furthermore, this review also elaborates on current challenges and future directions of 3D and 4D printing 
in the healthcare sector.

Current trends in AM of BMMs
BMMs prepared from 3D and 4D printing are widely employed in medicine. The following section 
concentrates on the recent developments of 3D and 4D printed BMMs in four major biomedical 
applications: tissue engineering, drug delivery, surgical and diagnostic tools, and implants and prosthetics. 
In Figure 1, the summary of 3D and 4D printed BMMs and their uses in the above-mentioned biomedical 
fields is presented.

Tissue engineering
3D printing

Tissue engineering, a discipline of biomedical engineering, uses a combination of cells, engineered materials 
and methods, and suitable biochemical and physiochemical factors to restore, maintain, improve, or replace 
various types of biological tissues. The primary criteria for a polymer to be qualified for tissue engineering 
applications are its high bioresorbability or biodegradability, high mechanical strength, and enhanced cell 
attachment ability [18]. Polylactic acid (PLA) is one such qualifier widely explored in bone tissue 
engineering. Gregor et al. [19] successfully fabricated PLA scaffolds with an average pore size of 350 
microns and 30% porosity via FDM-based 3D printing. The authors reported high proliferation rates in 
osteosarcoma cells with 30% and 50% porous scaffolds while exhibiting mechanical properties to support 
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Figure 1. A summary of recent developments of 3D and 4D printed BMMs and their applications in tissue engineering, drug 
delivery, surgical and diagnostic tools, and implants and prosthetics. Recent trends of raw materials (inside ovals) and 3D and 
4D printed BMMs (inside rounded rectangles) are illustrated under each biomedical application

load-bearing bone growth. Although alginate (Alg) hydrogels show porosity, biocompatibility, and 
solubility, they are restricted in 3D printing applications due to low mechanical strength, cell attachment, 
and easy degradation [20, 21]. However, a blend prepared by crosslinking Alg and gelatin (Gel) displayed 
high 3D printability and cytocompatibility with osteoblasts [22].

Recently, Kim et al. [23] prepared a bioink by combining Alg and silk fibroin (SF) protein to fabricate 
hydrogel scaffolds using DIW and visible light irradiation (Figure 2A). Due to the increase of cell 
compatibility through SF, these scaffolds supported the proliferation of fibroblasts with improved 
cytocompatibility than conventional Alg bioinks, making Alg/SF a promising material for tissue 
engineering.

In another effort, Lafuente-Merchan et al. [24] employed biopolymers such as Alg, nanofibrillated 
cellulose (NC), and hyaluronic acid to fabricate NC-Alg-hyaluronic acid scaffolds via extrusion-based AM. 
Mesenchymal stromal cells were used for cell viability analysis. Adding hyaluronic acid improved the 
scaffold properties, biocompatibility, and cell viability compared with NC-Alg scaffolds. Chameettachal et al. 
[25] demonstrated a DIW-3D printed enzymatic crosslinked silk-G bioink as a suitable material for 3D 
bioprinting of cartilage constructs.

SLM-based 3D printed hydrogel scaffolds containing platelet-rich plasma (PRP)-GelMA have also been 
studied [26]. Bioactive ceramics, another class of materials used in bone tissue engineering, have been 
successfully 3D printed to form complex bioceramic parts with dense and porous multifunctional 
structures [27]. While BJ and SLA have frequently been used to process bioceramics, various AM 
techniques, such as FDM, DIW, DED, and SLS, have been employed [28–30]. Ceramic-polymer composites 
have also been successfully 3D printed using polymers like polycaprolactone (PCL), PLA, or polylactide 
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Figure 2. Recently developed 3D and 4D printed BMMs for tissue engineering. (A) Alg/SF scaffolds 3D printed using DIW and 
visible light irradiation; (B) and (C) DLP-based 4D bioprinted [Gel methacrylate (GelMA)/poly(ethylene glycol) dimethacrylate 
(PEGDM)] petal and star-shaped tissue scaffolds, respectively. (Bi), (Ci) printed structures and (Bii), (Cii) curved structures after 
absorbing deionized water; (D) 4D printed crosslinked Alg dialdehyde (ADA)/Gel after swelling in pure water to form a tubular T-
junction and the inset of (D) is the magnified view at the junction area
Note. (A) Adapted with permission from “Silk fibroin enhances cytocompatibilty and dimensional stability of alginate hydrogels 
for light-based three-dimensional bioprinting,” by Kim E, Seok JM, Bae SB, Park SA, Park WH. Biomacromolecules. 
2021;22:1921–31 (https://pubs.acs.org/doi/10.1021/acs.biomac.1c00034). © 2021 American Chemical Society; (B) and (C) 
adapted with permission from “Visible light-based 4D-bioprinted tissue scaffold,” by Gugulothu SB, Chatterjee K. ACS Macro 
Lett. 2023;12:494–502 (https://pubs.acs.org/doi/epdf/10.1021/acsmacrolett.3c00036). © 2023 American Chemical Society; (D) 
adapted from “4D biofabrication of T-shaped vascular bifurcation,” by Kitana W, Apsite I, Hazur J, Boccaccini AR, Ionov L. Adv 
Mater Technol. 2023;8:2200429 (https://onlinelibrary.wiley.com/doi/full/10.1002/admt.202200429). CC BY.

glycolic acid (PLGA) with calcium phosphate (CaP) [31, 32]. The incorporation of polymers improves the 
processability and flexibility of the fabricated composites during 3D printing. BGs, especially the highly 
abundant 45S5 composition (45 SiO2, 24.5 CaO, 24.5 Na2O, and 6 P2O5—in wt%), other melt-derived 
formulations, and sol-gel derived BGs have also been explored for 3D printing of scaffolds for bone tissue 
engineering. Recent research by Ma and co-workers [33] exhibited 3D printing of 45S5 BG-based scaffolds 
using SLA-based AM.

Using the composites prepared with 45S5 BG and tricalcium phosphate (TCP), Bose et al. [34] 
demonstrated successful 3D printing of scaffolds via BJ. 45S5 BG-based scaffolds have also been 3D printed 
via the SLS AM technique [35] and DIW [36]. Several studies have also been reported on the successful 3D 
printing of sol-gel-derived BGs. For instance, Wu and co-workers [37] described DIW 3D printed scaffolds 
of sol-gel-derived mesoporous BGs combined with polyvinyl alcohol (PVA). The study by Dai et al. [38] 
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illustrated DIW 3D printed Gel/SF scaffolds incorporating sol-gel derived 1 wt% of Cu-doped BG particles 
for bone defect repair applications. Moreover, polymer-BG composites have also been successfully 3D 
printed. FDM technique has been successful with BG-based composites prepared from PCL [39], PLA [40], 
poly(hydroxybutyrate-co-hydroxyvalerate) (known as PHBV) [41], and polyolefin binders [42] while DIW 
has been mostly used with silk [43].

4D printing

Contribution from 4D printing towards tissue engineering has also been evidenced in recent literature [44, 
45]. Live cells containing bioinks have been 4D printed, enabling the fabrication of functional tissues for 
successful organ transplantation and efficiently repairing damaged tissues [16]. Gugulothu and Chatterjee 
[46] demonstrated a successful 4D printed bioink consisting of a blend of GelMA and PEGDM with a 
photoinitiator and a photoabsorber via DLP technique. This 4D bioprinted material acts as a shape-
morphing and cell-laden hydrogel for tissue engineering applications by supporting cell viability and 
proliferation while altering its shape upon hydration, a cell-friendly stimulus (Figure 2B and C) [46]. Díaz-
Payno and co-workers [47] recently prepared an extrusion-based 4D printed smart multi-material system 
using two hydrogel-based materials, hyaluronan and Alg. This scaffold self-bends upon differential swelling 
between the two zones, mimicking the natural cartilage structure. Ding et al. [48] showed a DIW-based 4D 
bioprinting to produce a shape-morphing cell condensate-laden bilayer system. The technology facilitates 
the creation of tissue constructs with precise control over cellular organization and distribution and would 
pave the way for future research on scaffold-free tissue regeneration.

Using ADA and Gel, Kitana et al. [49] exhibited DIW-based 3D printed tubular structures that self-
transformed into a T-junction after immersing in water, hence showing 4D printing behaviour. The 
transformation of the 4D printed crosslinked ADA/Gel, into a tubular T-junction after swelling in pure 
water is depicted in Figure 2D [49]. Human endothelial cells seeded on the T-junction showed outstanding 
growth properties and excellent cell viability. This finding could pave the way for future vascularized 
tissues for the survival and function of larger engineered organs. Furthermore, 4D printing has become 
promising for fabricating patient-specific, functional organs that can be adapted and integrated within the 
recipient’s body [50].

Drug delivery
3D printing

Drug delivery refers to a broader scientific field involving various approaches, formulations, manufacturing 
techniques, storage systems, and technologies that transport a pharmaceutical compound to a specific 
target site to obtain a desired therapeutic effect. Polymers such as PLGA, PCL, and other materials like CaP 
ceramics, BGs, bioactive ceramics, and ceramic-polymer pastes have been explored in this field. BJ AM 
technology has been widely utilized to fabricate BMMs in this field. VP, PBF, and material extrusion AM 
techniques have also been used to 3D print relevant scaffold structures. During drug delivery, porous 
scaffold structures are first 3D printed from the relevant material, followed by the loading of the drug. This 
strategy avoids the degradation of drugs upon high-temperature processing. There has been extensive 
research on processing, mechanical property measurements, and biocompatibility evaluations in vitro and 
in vivo of many CaP ceramic scaffolds.

Ceramic-polymer composites have been 3D printed successfully. Adding polymers such as PCL, PLA, 
and PLGA into CaP ceramics improves the processability and flexibility of the printed part [31, 32]. The BJ 
AM technique enables the delivery of heat-labile molecules such as growth factors and antibiotics by 
fabricating low-temperature CaP-based scaffolds [28]. Controlling pharmacokinetics is essential in drug 
delivery applications. Inzana et al. [51] described that a PLGA-based post-printing coating of CaP scaffolds 
achieved first-order drug release kinetics over 14 days. Drug/growth factor-loaded composite CaP scaffolds 
could be successful via extrusion-based AM under low temperatures and mild post-processing conditions. 
Mineralized slurry or paste compositions, extrudable under physiological temperature, become ideal for 
this approach [28]. Martínez-Vázquez et al. [52] described successful DIW-based 3D printing of porous 
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silicon-doped hydroxyapatite (HASi) and Gel composite scaffolds for delivering vancomycin antibiotics. 
Mild scaffold fabrication conditions maintained the antibiotic’s antimicrobial activity in standard in vitro 
assays. In a similar DIW-based approach, Akkineni et al. [53] demonstrated the fabrication of vascular 
endothelial growth factor (VEGF) or bovine serum albumin (BSA) loaded CaP-based scaffolds. The 
mechanical properties of these scaffolds were comparable to those of trabecular bone and showed 
biocompatibility with mesenchymal stem cells for up to 21 days. Poldervaart et al. [54] exhibited a rare in 
vivo effort to 3D print composite macroporous Alg scaffolds via extrusion, laden with Gel microparticles 
(GMPs) and mesenchymal stem cells. However, concentrations greater than 3% w/v Alg could not be 
extruded due to the high viscosity factor of the printing ink.

On the other hand, high-temperature scaffold fabrication or processing enables CaP-based ceramics to 
achieve improved mechanical properties. However, high-temperature processing lacks uniform printability 
of cells and bioactive molecules. As a precaution, additional post-processing routes can be taken, such as the 
incorporation of bio-factors and cells onto the printed structures, including surface adsorption or surface 
modifications, regardless of the 3D printing technology [28]. Moreover, doping CaP with silicon improved 
both the bioactivity and mechanical properties of these scaffolds. Combined with bone morphogenetic 
protein (BMP) in the form of recombinant human BMP-2 (rhBMP-2), these scaffolds enabled bone 
ingrowth, osseointegration, and vascularization. Ishack et al. [55] fabricated biphasic CaP [15% 
hydroxyapatite (HA) and 85% β-TCP] scaffolds via extrusion-based AM. After loading with either BMP-2 or 
dipyridamole and implanting into a mouse calvarial defect, they promoted bone regeneration eight weeks 
post-operatively. Koski et al. [56] demonstrated the use of naturally sourced gelatinized starch as a natural 
binder system with HA ceramic to obtain extrusion-based solid-freeform fabricator (SFF) scaffolds. These 
scaffolds showed improved compressive strength and in vitro biocompatibility with osteoblast cells without 
crosslinking or post-processing.

4D printing

4D printing is applied in numerous advanced drug delivery systems to improve efficiency in treatment 
outcomes. Controlled release of drugs, patient-specific dosing, and targeted delivery are the main 
advantages of these 4D printed structures compared to conventional systems [57]. Researchers can 
fabricate devices that release drugs at a precise rate over a predetermined period by utilizing the ability of 
the 4D printed scaffolds/structures to respond to specific stimuli like temperature and pH changes [58].

Tran et al. [59] devised 4D printed smart hydrogel systems that respond to thermal, magnetic, 
electrical, photo, pH, and water stimuli. For example, a pH-responsive hydrogel capsule releases its content 
gradually in an acidic environment of the stomach. The authors reported that this controlled drug-releasing 
strategy is highly beneficial for minimal side effects and improved therapeutic efficacy. Moreover, AM 
techniques such as SLA, DLP, two-photon photopolymerization (2PP), and extrusion have successfully 
fabricated these hydrogels. Cancer treatment is another area where 4D printed personalized drug-eluting 
implants have recently become a highly versatile technique. Upon responding to external stimuli like pH 
changes or biomarkers, these implants could release chemotherapeutic agents at a controlled rate, enabling 
precise and timely distribution of drugs to specific sites, minimizing side effects and enhancing the overall 
efficiency of the treatment [60]. Makvandi et al. [61] prepared a 4D printed microneedle patch for 
personalized pain management. This BMM could release analgesic drugs in response to inflammation/pain 
signals. Importantly, 4D printing approaches ensure effective and efficient drug delivery with minimal side 
effects.

Some of the recent 3D and 4D printed BMMs targeted for drug delivery applications are depicted in 
Figure 3. These include PLA/PVA-based FDM-3D printed mouthguard (Figure 3A–D) loaded with food-
grade flavor vanillic acid (VA) and clobetasol propionate (CBS) model drug [62], polymer/carbon-based 
magnetoelectric responsive porous nanocookie conduit 4D printed via DLP (Figure 3E) [63], and ethyl 
cellulose/hydroxypropyl methylcellulose (HPMC)/polyvinyl pyrrolidone (PVP)/cellulose acetate-based 
controlled drug release shell (Figure 3F and G) 3D printed via pressure-assisted microsyringes (PAM) 
technology [64].
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Figure 3. Recent 3D and 4D printing advancements in drug delivery. (A) PLA/PVA-based mouthguard in its FDM-3D printed 
form; (B) evaluations in humans; (C) VA food flavor-loaded and free regions; (D) CBS model drug-loaded and free regions; (Ec) 
DLP-4D printed nanocookie conduit showing its printed form and elastic properties (Ed); (F) PAM-3D printed controlled drug 
release shell without cap; (G) prepared for drug delivery applications
Note. (A)–(D) Adapted from “3D printing of a wearable personalized oral delivery device: a first-in-human study,” by Liang K, 
Carmone S, Brambilla D, Leroux J. Sci Adv. 2018;4:eaat2544 (https://www.science.org/doi/10.1126/sciadv.aat2544). CC BY-
NC; (E) adapted from “4D printing of stretchable nanocookie@conduit material hosting biocues and magnetoelectric stimulation 
for neurite sprouting,” by Fang JH, Hsu HH, Hsu RS, Peng CK, Lu YJ, Chen YY, et al. NPG Asia Mater. 2020;12:61 (https://
www.nature.com/articles/s41427-020-00244-1) CC BY; (F) and (G) adapted from “Optimization of semisolid extrusion (pressure-
assisted microsyringe)-based 3D printing process for advanced drug delivery application,” by Mohammed AA, Algahtani MS, 
Ahmad MZ, Ahmad J. Ann 3D Print Med. 2021;2:100008 (https://www.sciencedirect.com/science/article/pii/
S2666964121000035). CC BY.

Surgical and diagnostic tools
Surgical tools
3D printing

The focus of recent research on the 3D printing of biomedical devices from porous scaffolds has been 
shifted slightly towards structures like surgical tools. A surgical tool or instrument is a medical device for 
performing specific actions or carrying out desired effects during surgery, including the modification of 
biological tissues. Surgical tools can be prepared with AM techniques such as MJ with thermoplastics and 
thermosets and BJ and PBF-based techniques like SLS and SLM with metals, ceramics, polymers, and glasses 
[65]. Francis and co-workers [66] investigated using 3D printed surgical tools to develop a reliable and 
rapid high-level disinfection process for austere environments to diminish supply chain issues. George et al. 
[67] developed an SLS-based AM of a surgical tool kit, including hemostats, needle drivers, scalpel handles, 
retractors, and forceps, using virgin and recycled Dura-Form EX plastic powder. These approaches establish 
AM facilities for fabricating medical tools in places like surgical hospitals in combat zones, spacecraft or 
third-world environments. Rankin et al. [68] illustrated successful FDM-based 3D printing of an army-navy 
surgical retractor using PLA. This tool met the required mechanical properties inside an operating room. In 
another study, Wu and co-workers [69] displayed an FDM-3D printed silver nanoparticle-polyacrylamide 
(AgNP-Pam)/HPMC-based superporous hydrogel for wound dressing applications (Figure 4A). The large 
pores in 3D printed templates could buffer the swelling tendency of these dressings, thus diminishing the 
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detachment from wounds. Further, in vivo studies proved that these dressings could heal the infected 
wounds, restraining scar tissue formation [69].

Figure 4. Recent contributions in 3D and 4D printing towards surgical/diagnostic tools. (A) FDM-based 3D printed AgNP-Pam/
HPMC superporous hydrogel as a wound dressing; (B) 4D printed surgical gripper system: (i) illustrating the transition from the 
printed shape to the temporary shape, (ii) sequential snapshots of gripping of an object; (C) 3D printed device for magnetic 
focus lateral flow sensor for detecting cervical cancer biomarkers
Note. (A) Adapted with permission from “Combination of the silver-ethylene interaction and 3D printing to develop antibacterial 
superporous hydrogels for wound management,” by Wu Z, Hong Y. ACS Appl Mater Interfaces. 2019;11:33734–47 (https://
pubs.acs.org/doi/10.1021/acsami.9b14090). © 2019 American Chemical Society; (B) adapted from “Multimaterial 4D printing 
with tailorable shape memory polymers,” by Ge Q, Sakhaei AH, Lee H, Dunn CK, Fang NX, Dunn ML. Sci Rep. 2016;6:31110 
(https://www.nature.com/articles/srep31110). CC BY; (C) adapted with permission from “Magnetic focus lateral flow sensor for 
detection of cervical cancer biomarkers,” by Ren W, Mohammed SI, Wereley ST, Irudayaraj J. Anal Chem. 2019;91:2876–84 
(https://pubs.acs.org/doi/full/10.1021/acs.analchem.8b04848). © 2019 American Chemical Society.

4D printing

4D printing technology can fabricate smart surgical tools adaptable to environmental changes. These are 
functionally tailored to provide precision and control during complex surgical procedures. More 
interestingly, such smart tools can alter their shape and stiffness in response to specific external stimuli. 
These properties provide them with several advantages, such as conforming to different surgical scenarios 
and anatomical structures, mitigating the risk of damage to surrounding tissues, improving surgical 
outcomes,  and lowering patient recovery times [70]. Using high-resolution projection 
microstereolithography (PμSL) and multiple shape memory polymers, Ge and co-workers [71] successfully 
4D printed a surgical gripper system that changed its shape and stiffness responding to stimuli within the 
human body (Figure 4B). These properties could enable this gripper system to steer through tight spaces, 
grasp, and control fragile tissues while minimizing the risk of damage during surgical work. Bodaghi et al. 
[72] demonstrated a 4D printed actuator system utilizing fibres of shape memory polymers. This 
responsive surgical tool acted as a self-expanded stent, changing its diameter to a specific need. This could 
be utilized successfully during endovascular procedures, ensuring optimal blood flow and adapting to time-
based fluctuations in vessel diameter or pressure. Han and co-workers [73] investigated another 
fascinating smart system, a DLP-based 4D printed microneedle array with backward-facing curved barbs 
biomimicking porcupine quills-like structures. These barbs provided a more secure and stable connection 
with the particular tissue, 18 times stronger than the barbless microneedle. This smart microneedle array-
based approach would be beneficial in future transdermal drug delivery systems and or in wound closer 
applications. Zhou et al. [74] described a 4D printed wound closure device that adapted its shape and 

https://pubs.acs.org/doi/10.1021/acsami.9b14090
https://pubs.acs.org/doi/10.1021/acsami.9b14090
https://pubs.acs.org/doi/10.1021/acsami.9b14090
https://pubs.acs.org/doi/10.1021/acsami.9b14090
https://www.nature.com/articles/srep31110
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https://www.nature.com/articles/srep31110
https://pubs.acs.org/doi/full/10.1021/acs.analchem.8b04848
https://pubs.acs.org/doi/full/10.1021/acs.analchem.8b04848
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stiffness in response to wound contours. The device supported reduced scarring and efficient healing with a 
precise and gentle closure mechanism.

Diagnostic tools
3D printing

Medical diagnosis determines which disease or condition is responsible for a set of symptoms/signs. The 
devices that are utilized in this detection process are referred to as diagnostic tools, which include 
equipment such as stethoscope, blood pressure monitors, pulse oximeters, electrocardiographs (ECGs), 
electroencephalography (EEGs), ultrasonography (US), X-ray machines, and biosensors. Recent literature 
illustrates medical diagnostic tools fabricated via FDM, DIW, SLA, SLM, and SLS-based AM techniques.

Gaal et al. [75] exhibited 3D printed integrated, transparent, and sealed microchannel system via FDM 
using PLA. Different materials like paper, glass, wire, and polymers could be integrated within a 
microchannel. Then, an e-tongue sensor was 3D printed to detect basic tastes below the human threshold. 
In another study by Manzanares Palenzuela and co-workers [76], highly sensitive graphene-based rings and 
disc-shaped electrodes were 3D printed via FDM. Different redox probes were used to detect the 
electrochemical performance. The incorporation of PLA increased the electroactivity. López Marzo et al. 
[77] discussed an FDM-based 3D printed enzymatic biosensor for H2O2 detection. Biosensor performance 
was enhanced by applying gold nanoparticles (AuNPs) to facilitate heterogeneous electron transfer. Ren 
and co-workers [78] 3D printed a thermoplastic frame or a device using FDM to support a magnetic focus 
lateral flow sensor (Figure 4C) detecting and diagnosing cervical cancer biomarkers. Cardoso et al. [79] 
developed another grapheme-PLA (G-PLA) based amperometric biosensor for glucose detection in 
biofluids. This FDM-based 3D printed biosensor could also be modified to detect nitric and uric acid for 
saliva and urine analysis. 3D printed models have also been used to characterize the anatomical structure of 
the fractures and lesions as a complete pre-surgery evaluation [80]. Aerosol jet printing (AJP), a form of a 
DIW, uses a directed aerosol stream depositing a polymer on a substrate [81]. Past research evidences 3D 
fabrication of diagnostic tools via AJP. Yang and co-workers [82] developed silver microelectrode arrays 
(MEA) via AJP. The sensor successfully detected H2O2 and glucose levels, illustrating the potential of AJP to 
fabricate MEAs for applications like touch sensing, biosensing, and strain sensing.

Numerous studies have been reported on the 3D printing of diagnostic tools via SLA. For instance, Kuo 
et al. [83] developed a microfluidic device via SLA using low molecular weight poly(ethylene glycol) 
diacrylate (PEGDA) at sub-millimeter resolution. They fabricated an active micro-mixer containing 
pneumatic micro-valves and micro-channels with high resolution. These complex microfluidic devices 
would serve in various diagnosis fields, such as patch-clamp chips, biosensors, organ-on-a-chip, and tumor-
on-a-chip. Narayanan et al. [84] investigated a dual-mode electrochemical biosensor via SLA to diagnose 
glucose and H2O2. The structure was developed by coating with AuNPs and colloidal platinum as a function-
support matrix. Simultaneous detection of both glucose and H2O2 could be beneficial in potential real-time 
applications in clinical, biological, and environmental fields.

SLM has contributed significantly to the medical and dental fields. Studies by Vandenbroucke and co-
workers [85] showed that biocompatible metal alloys, Ti-6Al-4V and cobalt-chromium-molybdenum 
(Co-Cr-Mo), yield SLM-based 3D printed parts used as dental prostheses. These parts met the strength, 
stiffness, corrosion behaviour, and process precision standards for medical and dental applications. Kwon 
et al. [86] exhibited SLS-based low-temperature fabrication of copper nanoparticle thin films onto a 
polymer substrate, yielding a flexible, conductive, and transparent material. This could be applied to 
flexible touch electronic panels.

4D printing

4D printing has recently demonstrated immense potential in developing advanced diagnostic tools for the 
medical field. Owing to the ability to respond to external stimuli, 4D printed diagnostic tools offer more 
sensitivity, accuracy, and patient-specificity, leading to improved patient care. For instance, Kumar et al. 
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[87] introduced a wearable smart sensor made from thermoplastic polyurethane (TPU) 4D printed on 
fabric via FDM. Vital signals such as heart rate, blood pressure, and body temperature were monitored by 
the sensor owing to the stimuli-responsive nature of the TPU. The authors reported that this discovery 
would pave the way for future smart sensors with real-time monitoring and early detection of potential 
health issues. Guerra and co-workers [88] demonstrated 4D printed diagnostic tools: solid-cured tissue-
engineered implants made from photo-polymerizable resins. Embedded integrated microfluidic channels in 
the implants would change shape or color by binding to biomarkers specific to cancer or other infections, 
enabling rapid and easy visualization of the diagnosis. Generating anthropomorphic phantoms via 4D 
printing marks a revolution in medical imaging. These act as physical models used to calibrate and validate 
imaging equipment for radiotherapy. Colvill and co-workers [89] succeeded in 4D printing a deformable 
lung, including respiratory tract and liver phantom. This helps assess the accuracy of computed 
tomography (CT) and magnetic resonance (MR) imaging in radiotherapy planning. The 4D printed phantom 
enables clinicians to optimize treatment plans by responding to organ motion during respiration. 
Consequently, improved patient outcomes and reduced radiation exposure could be achieved.

Implants and prosthetics
3D printing

Medical implants are devices placed in or on the body surface. The most common implants are prosthetics 
intended to replace a damaged or missing body part. Apart from prosthetics, other implants deliver 
medicines to internal organs and tissues, support internal structures and monitor body functions. Implants 
can be made from biological materials such as bones, tissues, skin, metal, plastic, ceramic, and other 
composite materials.

AM is one of the most used techniques for manufacturing medical implants. 3D printing is preferred 
over conventional implant manufacturing methods mainly due to the ease of manufacturing a customized 
implant with enhanced compatibility and clinical results. 3D printed implants are popularly used in 
reconstructions of the spine, shoulder, and hip and for facial surgery and dental implants [90]. Patient-
specific implants and prostheses are fabricated using a wide range of medical-grade metallic, ceramic, 
polymer, and composite materials [91]. Metallic biomaterials are widely used in the medical field due to 
their superior mechanical properties and long lifetime. 3D printed metallic implantable medical devices are 
commonly made with alloys of Ti, Co-Cr-Mo, and stainless steel (SS) [92] using DED and PBF AM techniques 
[93]. Commercially pure Ti and its alloys (Ti-6Al-4V, Ti-6Al-7Nb, Ti-5Al-6Nb, and Ti-13Nb-13Zr) are the 
commonly applied bone implants due to low density, lightweight, and suitable tribological and mechanical 
properties [93]. Ti-based alloys possess the highest biocompatibility than any other metallic content, but 
they are still considered bioinert materials compared to bioceramics [94, 95]. Recently, many research 
attempts have focused on improving the quality of Ti implants, aiming for enhanced biocompatibility, 
osseointegration, and antimicrobial properties. Many studies have attempted to improve biocompatibility 
by surface modifying the 3D printed Ti implants. Some of the surface modifications on Ti scaffolds include 
the application of a homogeneous layer of microporous TiO2 and calcium-phosphate [96], genetically 
modified elastin-like recombinamers (ELRs) containing specific cell adhesive (RGD) and osteoinductive 
(SNA15) moieties [97], coating of aspirin (ASP)/PLGA [98], titania nanotubes via electrochemical 
anodization and bioactivation through HA coating [99], and chimeric peptides [100]. Studies on adding 
antimicrobial properties were carried out by surface coating of the Ti implants with gallium nitrate [101], 
vancomycin hydrochloride [102], flavonoid quercitrin [103], chitosan (CS)-modified MoS2 coating loaded 
with AgNPs [104], and calcium titanate [105], to prevent bacterial adhesion and proliferation on the 
surface. Today, biodegradable metallic implants such as magnesium alloys are gaining popularity as 
promising alternatives for metallic permanent prostheses. These biodegradable magnesium implants 
degrade gradually over time, matching the healing rate of surrounding bones and transferring the load back 
to the healing bone. Due to transparency towards X-rays, Mg-based implants do not interfere with 
radiographic techniques, allowing efficient monitoring of the implant. Further, Mg-based implants do not 
need to be surgically removed, preventing risks associated with additional surgical procedures [106, 107]. 
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Despite these beneficial properties, Mg-based implants are also associated with unfavorable characteristics, 
such as granular tissue formation around implants and rapid degradation of the implant before the bone 
heals, preventing their wide applicability. Recently, numerous attempts have been made to avoid implant 
degradation by surface modifications [107].

Ceramics are also used for making medical implants and can be categorized into bioactive ceramics 
(bioglass, HA wollastonite, phosphates) or bioinert ceramics (alumina, zirconia and titania) and composite 
materials [108]. 3D printed bioceramic scaffolds such as akermanite (Ca2MgSi2O7, AKT), HA, β-TCP, and BGs 
have been employed in creating multifunctional implants for osteosarcoma treatments. These implants may 
function as bone substitutes, filling the space and facilitating attachment, proliferation, and differentiation 
of bone cells, promoting bone regeneration. These scaffolds can be further functionalized by adding anti-
tumor functional agents, nanoparticles, and even engineered microbes to display additional functions [109–
111]. Ceramic biomaterials such as CaP, halloysite, alumina and zirconia contain many applications in 
dentistry. HA is one of the optimum ceramic materials for dental implants due to its excellent 
biocompatibility [112]. However, due to high elasticity modulus, HA is brittle and often used as a coating 
associated with other materials [113]. Zirconia is another bioactive ceramic material commonly used for 
dental applications due to higher biocompatibility, suitable mechanical and tribological behavior, less 
dental plaque production, and resistance to staining [114]. Zirconia has been used extensively for the 3D 
printing of dental implants and prostheses, and a recent review by Branco et al. [115] summarized the 
recent advances of 3D printed zirconia-based dental materials.

Polymers are a diverse group of natural or synthetic materials with favorable mechanical and 
physicochemical properties for applications in the medical field. Easy processing, low cost of production, 
compatibility with multiple 3D printing techniques, and the possibility of modifications are some of the 
advantages associated with polymers. 3D printing techniques such as FDM, SLA, SLS, and DIW are 
commonly used 3D printing methods for polymers [111, 116]. Synthetic polymers used in medical 
applications can be categorized into biodegradable and non-biodegradable polymers. Among the non-
biodegradable polymers such as polymethyl methacrylate (PMMA), polyether ether ketone (PEEK), and 
polyether ketone ketone (PEKK) have all been applied in the preparation of medical implants via AM [116–
118]. PMMA is a commonly used polymer for orthopedic and bone grafting implants, with specific 
applications for fixing orthopedic prosthetics in the shoulders, knees, and hips. However, PMMA-based 
bone cement has many disadvantages. Its limited interactions with the bone and non-biodegradability have 
prevented it from extensive usage as an implant material [119]. In a recent study by Chen et al. [120], an 
embedded 3D printing methodology combined with a special post-curing technique showed the potential to 
enhance the future fabrication of patient-specific, complex, and functional PMMA-based implants. PEEK is 
another leading high-performance thermoplastic organic polymer commonly used to produce medical 
tools, implants and prostheses via AM [121]. PEEK possesses many favorable characteristics, such as good 
mechanical properties, temperature stability, high wear resistance, low coefficient of friction, high 
processing capability and excellent biocompatibility making them suitable for a plethora of medical 
applications [121, 122]. One of the main advantages lies in its modulus of elasticity being similar to that of 
human bone, making it a suitable candidate for cranial, orthopedic, trauma and spinal implants via AM-
based techniques [123]. However, the bioinertness of PEEK hinders the bone attachment to the implant 
surface, resulting in poor osseointegration. Recently, there have been many attempts to improve the 
bioactivity of PEEK by incorporating HA and using other binder agents, such as PLGA, to load the PEEK 
surface with other beneficial compounds to provide favorable features [123]. Among biodegradable 
synthetic polymers, polyglycolide acid (PGA), PLA, PLGA, and PCL have been used in the manufacturing of 
medical implants [119]. Both PGA and PLA are commonly used for biodegradable screws, nails, and plates 
to fix orthopedics. However, the wide application of these biodegradable polymers is limited due to the 
rapid degradation properties of PGA and intrinsic brittleness, poor toughness, and a slow degradation rate 
of PLA [119, 124]. de Oliveira and co-workers [125] successfully 3D printed a PLA-based interference screw 
via the FDM technique. This device has shown an excellent tendon-to-bone fixation comparable to its Ti 
counterpart, with promising results.
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4D printing

4D printing technology has contributed remarkably to fabricating smart implants and prosthetics. Its ability 
to respond to specific stimuli, such as temperature, moisture, light, and magnetic fields, has yielded 
customizable and adaptable implants and prosthetics. Khorsandi et al. [126] covered recent contributions 
of 4D printing towards dentistry and maxillofacial surgery in fabricating relevant implants. With the ability 
to perfectly fit into the oral structure of the patient and also to adapt changes in the jawbone over time, 
these implants offer several advantages, such as optimal functionality, reduced discomfort, and improved 
patient satisfaction. 4D printing contributions towards orthopedics surgery should also be acknowledged. 
Customizable patient-specific implants fabricated via 4D printing ensure a precise fit and diminish 
complications. Zamborsky et al. [127] illustrated the applicability of 4D printing in manufacturing blood 
vessels, tissues, intelligent bandages, and efficient wound healing via 4D printed latticework. With the 
ability of these 4D implants to be adjusted to the body changes of patients with time and advancements in 
artificial intelligence (AI) technologies such as robotics, satisfied recovery and repair, a key goal of precise 
orthopedics could be achieved [128]. Lin et al. [129] demonstrated successful FDM-based 4D printing of 
biomimetic intestinal stents using shape memory biocomposites. The design was based on wavy 
biomimetic networks mimicking the nonlinear stress-strain nature of biological tissues. High flexibility, 
facilitation of reduced irritation of the intestinal wall, biodegradability, and near-body-temperature (NBT) 
triggered nature of these 4D printed stents are considered next-generation intelligent implants.

Zhou et al. [130] introduced 4D printed shape-memory vascular stents of βCD-g-PCL, altering their 
shapes in response to fluctuations in blood flow or vessel diameter. These properties not only supported 
affected blood vessels but also minimized complications and additional surgical interventions for the stent, 
enhancing the efficiency of the treatment. Previous literature also showed the successful fabrication of 4D 
printed spinal implants that could gradually alter the shape supporting the spine as it heals. This could 
potentially minimize complications and support efficient recoveries [131, 132].

Some of the recent 3D and 4D printed BMMs tested for implants and prosthetics, reported in the 
literature are showed in Figure 5. The ones illustrated represent a variety of BMMs including Ti-6Al-4V-
based porous channel dental implants 3D printed via DMLS (Figure 5A) [133], cross-linked PLA-based 
thermomagnetic responsive vascular stent 4D printed via DIW (Figure 5B) [134], PCL/acrylates-based 
thermo responsive vascular conduit 4D printed via DIW (Figure 5C) [135], FDM-3D printed acrylonitrile 
butadiene styrene (ABS)-based human skull and PEEK based porous implant applied on the skull 
(Figure 5D) [136], and FDM-3D printed PLA/antibiotic based interference fixation screws (Figure 5E) 
[137].

The above discussed most recent 3D and 4D printing techniques, materials, and printed BMMs for 
applications in tissue engineering, drug delivery, surgical and diagnostic tools, and implants and prosthetics 
are summarized in Tables 1 and 2.

Challenges
3D printing of biomaterials has revolutionized the biomedical sector with the ability to print precise, highly 
reproducible, and customized medical materials for numerous clinical applications. Despite modern 
advances, the limited availability of suitable 3D printable material and the need for a universal processing 
technique hinder the application of 3D printing in the medical sector. The applicability of some 3D 
bioprinted materials, such as medical implants, is often challenged due to low mechanical strength, 
biocompatibility, wear resistance, and sustainability [193]. A static 3D printed material becomes 
incompatible with more dynamic biological systems [194]. The unresponsive, static nature of 3D printed 
materials has motivated researchers to explore smart materials. Hence, the idea of 4D printing was 
conceptualized. Although 4D printing is a promising technique, it is still in the infancy level, with many 
challenges and opportunities for development.

One of the major challenges of 4D printing includes the limitation of suitable stimuli-responsive 
materials. Moreover, many 3D printable materials also show poor stimuli responsiveness, making them 
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Figure 5. 3D and 4D printed BMMs for implants and prosthetics. (A) Scanning electron microscopic (SEM) images of DMLS-
based 3D printed Ti-6Al-4V porous channel dental implants; (B) SEM images of DIW-based 4D printed circular stent using 
crosslinked PLA; (C) DIW-based 4D printed smart vascular conduit changing its shape by thermal stimulation, initial shape (left), 
temporary shape (middle), recovered initial shape (right); (D) FDM-based 3D printed human skull (red portion) and the porous 
implant (brown portion surrounded by red skull) using ABS and PEEK, respectively; (E) FDM-based 3D printed interference 
fixation screws using PLA (left) and PLA-gentamicin (GS) antibiotic (right)
Note. (A) Adapted with permission from “3D printing of Ti-6Al-4V-based porous-channel dental implants: computational, 
biomechanical, and cytocompatibility analyses,” by Chakraborty A, Das A, Datta P, Majumder S, Barui A, Roychowdhury A. 
ACS Appl Bio Mater. 2023;6:4178–89 (https://pubs.acs.org/doi/10.1021/acsabm.3c00403). © 2023 American Chemical Society; 
(B) adapted with permission from “Direct-write fabrication of 4D active shape-changing structures based on a shape memory 
polymer and its nanocomposite,” by Wei H, Zhang Q, Yao Y, Liu L, Liu Y, Leng J. ACS Appl Mater Interfaces. 2017;9:876–83 
(https://pubs.acs.org/doi/10.1021/acsami.6b12824). © 2016 American Chemical Society; (C) adapted with permission from “3D 
printing of highly stretchable, shape-memory, and self-healing elastomer toward novel 4D printing,” by Kuang X, Chen K, Dunn 
CK, Wu J, Li VCF, Qi HJ. ACS Appl Mater Interfaces. 2018;10:7381–8 (https://pubs.acs.org/doi/10.1021/acsami.7b18265) © 
2018 American Chemical Society; (D) adapted from “Polyether-ether-ketone (PEEK) and its 3D-printed quantitate assessment 
in cranial reconstruction,” by Moiduddin K, Mian SH, Elseufy SM, Alkhalefah H, Ramalingam S, Sayeed A. J Funct Biomater. 
2023;14:429 (https://www.mdpi.com/2079-4983/14/8/429). CC BY; (E) adapted from “3D printing custom bioactive and 
absorbable surgical screws, pins, and bone plates for localized drug delivery,” by Tappa K, Jammalamadaka U, Weisman JA, 
Ballard DH, Wolford DD, Pascual-Garrido C, et al. J Funct Biomater. 2019;10:17 (https://www.mdpi.com/2079-4983/10/2/17) CC 
BY.

Table 1. Recent developments in 3D printing of BMMs for biomedical applications

3D printing 
technique

Materials and printed BMMs Reference(s)

Tissue engineering
FDM PLA–scaffolds [19]

Alg/Gel–scaffolds [22]DIW
Alg/SF protein–scaffolds [23]

Extrusion Alg/NC, hyaluronic acid–scaffolds [24]
FDM PCL–scaffolds [32]
BJ 45S5 BG/TCP–scaffolds [34]
SLS 45S5 BG–scaffolds [35]
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3D printing 
technique

Materials and printed BMMs Reference(s)

45S5 BG–scaffolds [36]
BGs/PVA–scaffolds [37]

DIW

Cu-doped BG-based composite scaffolds [38]
BG/PCL–scaffolds [39]
BG/PLA–scaffolds [40]
45S5 BG/PHBV–resorbable scaffolds [41]

FDM

Ag-doped BG-based ceramic scaffolds [42]
DIW SF/Gel/BG–bone constructs [43]
FDM PCL/nano-HA–composite scaffolds [138]
Drug delivery

CaP/silica-based nanocomposite implant [139]BJ
CaP/TCP/HA/dextrin-based scaffolds [140]

PBF CaP/PHBV-based nanocomposite scaffolds [141]
Levetiracetam/PVP-vinyl acetate copolymer (PVAc)–tablets [142]PAM
Ethylcellulose/HPMC/PVP/cellulose acetate–controlled release shell [64]
Haloperidol/Kollidon® VA64/Kollicoat® IR/Affinsiol™ 15 cP/HPMC acetate succinate 
(HPMCAS)–tablet

[143]

Clotrimazole/TPUs–intravaginal ring [144]

FDM

Isoniazid (INZ)/rifampicin (RFC)/hydroxypropyl cellulose (HPC)/hypromellose acetate 
succinate (HPMC-AS)–bilayer tablet

[145]

Levetiracetam/HPC–tablets [146]
Tacrolimus/Gelucire 44/14/Gelucire 48/16–suppositories [147]

Semi-solid extrusion

Lamotrigine/Gel/HPMC–drug formulations [148]
Lopinavir/Kollicoat®/Candurin® NXT Ruby Red–printlets [149]SLS
Clindamycin palmitate/microcrystalline cellulose (MCC)/lactose monohydrate (LMH)–tablets [150]
Lidocaine hydrochloride/Elastic Resin–bladder devices [151]SLA
Hydrochlorothiazide/amlodipine/atenolol/irbesartan with PEGDA/diphenyl(2, 4, 6-trimethyl-
benzoyl) phosphine oxide (TPO)–antihypertensive polyprintlet

[152]

Tramadol/HPC/polyethylene oxide (PEO)–opioid medicines [153]Direct powder 
extrusion (DPE) Itraconazole/HPC–UL, SSL, SL, and L (different HPC grades/compositions)–drug products [154]
FDM PLA/PVA-based mouthguard [62]
Surgical and diagnostic tools
SLS Virgin and recycled Dura-Form EX plastic powder–surgical tool kit [67]

PLA-based Army-Navy surgical retractor [68]
PLA-based microchannel system [75]
Graphene/PLA–ring- and disc-shaped electrodes [76]
Graphene-based enzymatic biosensor [77]

FDM

Graphene/PLA–electrode [79]
DIW-AJP Ag–microelectrode arrays [82]
SLA PEGDA–biomicrofluidic devices [83]
SLS Cu nanoparticles/polyethylene-naphthalate (PEN)–flexible touch panel [86]
FDM PLA/PAM/HPMC–hydrogel wound dressings [69]
FDM Thermoplastic–frame for magnetic focus lateral flow sensor detecting cervical cancer 

biomarkers
[78]

Implants and prosthetics
DED Si3N4/Al2O3/HA/Ti6Al4V–composites [92]
DIW Ti/Pluronic F-127–scaffolds [97]
SLM Ti-6Al-4V-based implants [98]
SLA Composites-based dental crowns [155]
SLA Antimicrobial HA-based dental bite [156]
DLP Polymer-based dental crowns and bridges [157]
DLP Zirconia-based dental ceramic prostheses [158]
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3D printing 
technique

Materials and printed BMMs Reference(s)

MJ Biocompatible photopolymer-based interim dental crowns [159]
FDM PEKK-based bone analogs [117]

PMMA/PEEK–cranial implant [118]
PMMA–medical implants [120]

FDM

PLA–interference screw [125]
DMLS Ti-6Al-4V–porous channel dental implant [133]
FDM ABS–human skull; PEEK–porous implant [136]
FDM PLA/GS–interference fixation screws [137]

Table 2. Recent developments in 4D printing of BMMs for biomedical applications

4D printing 
technique

Stimuli Materials and printed BMMs Reference(s)

Tissue engineering
DLP Hydration GelMA/PEGDM–tissue scaffold [46]
Extrusion Solvent Hyaluronan/Alg–bilayered scaffold [47]
DIW Shear strain Oxidized and methacrylated Alg (OMA)/GelMA–cell condensate-

laden bilayer system
[48]

DIW Solvent ADA-Gel-based T-shaped vascular bifurcation [49]
Solvent Methacrylated Alg (AA-MA) and methacrylated hyaluronic 

acid–vascular tissue
[160]DIW

Solvent, near-infrared (NIR) 
light, and temperature

Alg/polydopamine–tissue scaffolds [161]

Inkjet Solvent GelMA/Gel-carboxylated-methacrylate bilayer [162]
Soybean oil epoxidized acrylate (SOEA)–cardiac tissue [163]SLA Temperature
Poly(methyl methacrylate)–neural tissue [164]

Magnetism PCL/iron doped HA–bone tissue [165, 166]
Temperature PLA/PCL/SOEA–muscle tissue [167]
Solvent AA-MA/PCL–muscle tissue [168]

FDM

Temperature SOEA–muscle tissue [169]
DIW and inkjet 
printing

Magnetism Agarose/collagen type I-based cartilage tissue [170]

Extrusion-
based printing

Temperature Polyurethane (PU)

Commercial polymers–tissue scaffolds

[171]

DLP Solvent PEG(700)DA–tissue scaffolds [172]
DIW pH PEG-based microgel scaffolds [173]
DLP Temperature PCL diacrylate (PCLDA)-based bilayer membrane [174]
Drug delivery

Humidity and temperature PU and polyethylene–dual stimuli self-morphing structures [175]Extrusion
Alg-Ca2+ coordination Pluronic F127 diacrylate macromer (F127DA)/Alg–shape memory 

hydrogels
[176]

DLP Magnetoelectricity 4-hydroxybutyl acrylate (4-HBA)/urethane-polyethylene glycol-
polypropylene glycol (PU-EO-PO) monomer/electromagnetized 
carbon porous nanocookies–conduit material

[63]

Temperature/fluid PVA-based expandable drug delivery structures [177]FDM
Water PVA and glycerol-based intravesical drug delivery device [178]

DIW Temperature/pH/enzyme Pickering emulsion gels
BSA methacryloyl (MA)/poly(N-isopropylacrylamide)-P(NIPAAm) 
(thermo-sensitive ink)
BSA-MA/poly[2-dimethylaminoethyl methacrylate]-P(DMAEMA) (pH-
sensitive ink)

BSA-MA + F127 (enzyme sensitive ink)–hydrogels

[179]

DLP-PμSL Solvent/light PEGDA–microneedle array [73]
DIW pH Alg fibres-based porous scaffolds [180]
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4D printing 
technique

Stimuli Materials and printed BMMs Reference(s)

PVP/methacrylic acid co-polymer-based tablets [181]FDM pH
HPMC-AS-based tablets [182]

Surgical and diagnostic tools
PμSL Temperature SMPs-based surgical gripper system [71]
Jetting Temperature SMPs-based actuator system/self-expanded stent [72]
FDM Load PU/fabric–wearable smart sensor [87]
FDM Motion TPU–deformable lung [89]
Implants and prosthetics
FDM Temperature Poly(ethylene glycol)/shape memory PLA (SMPLA)–biomimetic 

intestinal stents
[129]

DIW Temperature βCD-g-PCL–vascular stent [130]
DIW Temperature PCL/acrylates-based vascular conduit [135]

Thermoplastic copolyester elastomer–vascular stent [183]Temperature
PLA-based vascular stent [184, 185]

FDM

Thermo-magnetism PLA-based magnetic nanocomposites–vascular occluder [186]
DIW Thermo-magnetism Fe3O4/PLA/dichloromethane/benzophenone–vascular stent [134]

GelMA/PEGDA–cardiac patch [187]SLA Internal stress
SOEA/graphene–neural conduit [188]

SLA Temperature PCL/isocyanato ethyl methacrylate–tracheal stent [189]
DLP and DIW NIR light and temperature Bisphenol A diglycidyl ether, poly(propylene glycol) bis(2-

aminopropyl) ether, and decylamine–cardiac patch
[190]

DIW Fe3+ ions, sodium lactate/
UV

Acrylamide-acrylic acid/cellulose nanocrystal–bilayer hydrogel stent [191]

FDM Magnetism Fe2O3/shape memory PLA–occluders [192]

undesirable for 4D printing. The materials used for the 4D printing of BMMs should also be biocompatible 
and biodegradable with acceptable mechanical properties. Although biomaterials, including metals, 
polymers, and ceramics, can be used as smart materials, only smart polymers are currently successful in 4D 
printing [194].

Currently, there are limitations in providing contactless stimulations to 4D printed materials in vivo, 
and many available contactless stimuli are incompatible in the cellular environment. Thermal stimulus is 
commonly used for achieving shape-changing properties. The lack of understanding of unconventional 
novel stimuli and the unknown behavior of the printed material upon repeated exposure to a stimulus 
hinder the exact prediction of responses. Further, the unpredictable nature and complexity of the stimuli 
present in biological systems challenge the optimum performance of the printed materials in vivo. The lack 
of 4D printable materials capable of reversible transformation is another issue that requires future studies. 
Overall, 3D and 4D printing still produce simple designs; hence, developing, standardizing, and regulating 
highly complex structures could take time, skill, and effort.

Future outlook
Novel five-dimensional (5D) and six-dimensional (6D) printing technologies have recently been developed 
using the knowledge of 3D and 4D printing. 5D printing targets multidimensional objects printed using five 
axes. Those five axes are x, y, z, and two additional rotational axes that represent the movement of the 
printing head and the print bed at a specified angle. The main objective of 5D printing is to manufacture 
products with enhanced mechanical properties using less material. 5D printing has excellent potential in 
producing curved, complex structures of medical devices, including artificial bones and complex implants 
with curved surfaces and improved mechanical properties [193, 195].

6D printing was first introduced in 2021, incorporating 4D and 5D printing techniques [196]. Similar to 
4D printing, 6D printed materials can change shape, properties, or functions in the presence of an 
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environmental stimulus. Moreover, the production process in 6D printing is identical to 5D printing. 
Interestingly, 6D printed objects are more complex and flexible, with superior mechanical properties and 
sensitivity [193, 196]. Future research should be based on the development of novel materials for 4D and 
6D printing, where a desirable change is achieved as a response to the stimulus.

All 3D, 4D, 5D, and 6D AM techniques show enormous potential for biomedical applications in the 
future. Smart-printed materials with tailored structures and improved mechanical properties can be 
achieved when progressing from 3D to 6D printing. However, the cost of the printing device also increases 
with higher-order printing setups [193]. Therefore, the user needs to make educated decisions related to 
the selection of printing technique for each scenario.

Safety, biocompatibility, precision, and functional effectiveness are some of the main parameters to 
consider when AM materials are employed in biomedical applications. When customizing 3D and 4D 
printed materials for clinical usage, a multidisciplinary expert panel should conduct a comprehensive 
analysis covering all aspects. Effective preoperative planning directly influences the outcome of the surgical 
applications of 3D printed implants. Therefore, combining modern imaging and simulation techniques is 
imperative for conducting successful clinical procedures using AM materials. In future AM, emphasis should 
also be given to contactless manipulation stimuli that can cause changes in the materials without physical 
contact [193].

Fabricating 4D printed multi-stimuli responsive materials could possibly improve the performances of 
biomedical applications. For example, these materials would adjust their function depending on the body 
temperature, pH, and other biological factors, yielding efficient treatments and also could reduce the high 
cost of 5D and 6D printing [179]. Biomimetic 3D printed materials display better compatibility, hence 
mimicking the structural and functional performance of natural body parts [197]. Incorporating self-
healing properties into 4D printed materials would repair themselves in response to damages, benefitting 
implants or prosthetics without needing replacements or complex surgeries [198]. Moreover, integrating 
sensors and electronic components within 4D printed devices would bring several advantages, such as real-
time monitoring of the device performance and gathering and storing valuable health-related information.

Further, research should be conducted to enhance the biocompatibility of 3D printed materials by 
incorporating biocompatible materials and surface coatings [199]. Developing biohybrid systems by 
combining living cells with 4D printed structures endows biomimetic features and functionalities by 
supporting cell proliferation and enhancing cell functions in regenerative medicine.

Although 3D printing emerged as a novel technique more than 30 years ago, its clinical application 
became popularized within the last 10 years. Therefore, technical, regulatory, quality control, and licensing 
guidelines still need to be fully developed. Due to the current popularity of 3D printing in clinical 
applications globally, it is urgently required to introduce standards and include them in the quality control 
frameworks [95]. Many organizations, including the International Organization for Standardization (ISO), 
the International Medical Device Regulatory Forum (IMDRF), and the International Electrotechnical 
Commission (IEC), are currently attempting to establish global standards for products and procedures 
associated with AM [93].

The recently introduced cutting-edge technology is 3D and 4D printing of energy storage batteries 
[200–203]. For example, recent research efforts have succeeded in the 4D printing of polydimethylsiloxane 
(PDMS)-based batteries controlled by external magnetic fields [203]. Interestingly, tunable mechanical 
properties could also be achieved by incorporating different filler combinations such as carbon particles, 
ceramic, and metal. These additively manufactured programmable PDMS-based composites would pave the 
way for future implant batteries and ceramic-based medical implants [203].

Conclusions
3D and 4D printing technologies have opened up a new era in manufacturing smart constructs and devices 
for the biomedical field. This review has summarized the recent advances in 3D and 4D printing 
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technologies to fabricate BMMs for tissue engineering, drug delivery, surgical and diagnostic tools, and 
implants and prosthetics applications. The paper has also compared major similarities and differences 
between 3D and 4D printing and their challenges in this domain. The review has also explored several 
exciting 3D and 4D printing prospects in developing advanced smart materials, biohybrids, 5D and 6D 
printing technologies, and bioelectronic devices. Finally, 3D and 4D printed BMMs exhibit immense 
potential in future biomedical and bioengineering applications, ultimately empowering medical diagnosis 
and treatments and invigorating more efficient and sustainable human healthcare.
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