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Abstract
The gut microbiota comprises a complex bacterial community that resides in the intestine. Imbalances in 
the gut microbiota can disrupt immune homeostasis, triggering autoimmune diseases including non-
infectious uveitis. Despite recent advances, the underlying mechanisms linking the microbiome and uveitis 
are not fully understood. This review offers a comprehensive analysis of the literature addressing 
microbiome’s relationship with ocular inflammation. Additionally, it explores the potential of modulating 
the gut microbiota as a novel therapeutic target. A literature search of published articles related to the role 
of ocular microbiome in non-infectious uveitis in PubMed and Scopus databases was conducted. The 
following keywords were used: microbiome, uveitis, and immune-mediate diseases.
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Introduction
While uveitis is a diverse and complex disease, the prevailing belief is that a combination of environmental 
and genetic factors, coupled with immune-mediated inflammation, plays a crucial role in its onset and 
progression. The condition is caused by a disturbed balance between the regulatory and effector 
components of the immune system, a phenomenon marked by a complex interplay of pro- and anti-
inflammatory factors leading to the destruction of the immune-privileged tissues, specifically those of the 
eye [1].

The process of colonization by bacteria following birth plays a fundamental role in shaping the human 
immune system whereby the body’s surfaces become covered by innumerable bacteria by the time of 
adulthood. The term “microbiome” is used to refer to these wide varieties of microorganisms [2].

The etiology of uveitis is diverse; it could be infectious, immune-mediated, iatrogenic, or undetermined 
etiologies. This literature review compiles existing research on the correlation between microbiota and 
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non-infectious uveitis (NIU). There are contradictory findings suggesting that the relationship between 
microbiota and uveitis may be more complex than initially thought. While further research is needed to 
fully understand this relationship, the existing literature highlights the various mechanisms through which 
intestinal dysbiosis may contribute to the pathogenesis of NIU as well as the potential value of microbiome-
based interventions for the prevention and treatment of uveitis.

Methodology
A search of published articles related to the role of microbiome in uveitis was conducted. The literature 
review of published articles was done using PubMed and Scopus databases. The following search terms in 
various combinations were used: non-infectious uveitis, gut microbiome, dysbiosis, and HLA.

Gut microbiome
The microbiome is a complex ecosystem that varies in population and diversity according to different 
factors such as age, genetics, diet, lifestyle, and environmental factors [2]. Studies have shown that 
disruptions in the balance of the microbiome, known as dysbiosis, can result in immune dysregulation, 
thereby contributing to the development of various autoimmune disorders such as inflammatory bowel 
disease (IBD) [3]. Furthermore, the research has established a link between the intestinal microbiota and 
extraintestinal disorders like multiple sclerosis (MS), fibromyalgia, arthritis, and mental disorders. 
However, some experts argue that the current body of evidence is insufficient to definitively establish a 
causal relationship between gut health and extraintestinal diseases [2]. However, studies on mice have 
shown that changes in the composition of gut microbiota can modulate cytokine production and T-cell 
activation, which can influence the development of autoimmune diseases in the eyes [4].

The human gut microbiome comprises approximately 160 bacterial species, the majority can be 
classified into three groups based on their physiological functions: fermentative bacteria, bile-tolerant 
bacteria, and mucin-degrading bacteria [5, 6]. The fermentative bacteria produce a range of organic acids as 
end products of carbohydrate fermentation. These include short-chain fatty acids (SCFAs) such as butyrate, 
succinate, and propionate, which play a vital role in the physiology of the gastrointestinal tract and the 
overall health of the host [7].

The group of butyrate-producing bacteria (BPB) is considered a significant anti-inflammatory bacterial 
population [8]. This group, consisting of bacterial species like Faecalibacterium, Blautia, Roseburia, 
Lachnospira, and Ruminococcus, has potential benefits such as modulation of immune response and 
production of butyrate, which stimulates the production of immunosuppressive regulatory T (Treg) cells as 
well as inhibits the expression of proinflammatory mediators. Additionally, it encourages mucin secretion, 
which strengthens and protects the gastrointestinal epithelial barrier [9–12].

A reduction in butyrate production may result in a disruption of the gut microflora equilibrium, 
thereby causing a decline in the Treg cells and the initiation of T-effector responses. These changes may 
have long-term consequences for both the composition of the gut microbiota and the efficiency of the 
immune system [12]. Methanogens, including the Candidatus, Methanomethylophilus, and Methanoculleus 
bacterial species, constitute an additional category of beneficial bacteria which produce methane that has 
anti-inflammatory and anti-apoptotic effects on intestinal as well as retinal tissues [12].

Pathogenic microbes with proinflammatory properties include sulfate-reducing bacteria (SRB) like 
Bilophila spp. and opportunistic pathogens like Parabacteroides spp., Paraprevotella spp., and 
Fusobacterium spp. Hydrogen sulfide (H2S), produced during sulphate reduction by SRB, inhibits butyrate 
metabolism in intestinal cells. Additionally, this gas promotes inflammatory response in the gut by 
disrupting the integrity of the intestinal barrier and thereby exposing the intestinal epithelium to bacterial 
products [13, 14]. These SRB have been detected in the microbiota of patients with autoimmune uveitis. 
Additionally, several studies have compared the bacterial profiles of individuals with uveitis to those of 
healthy individuals. The results revealed a shift in the microbial community structure which may suggest a 
disruption in the balance between protective (symbiotic) and harmful (pathogenic) microorganisms. 
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Particularly, uveitis patients exhibited a significant reduction in protective microorganisms, coupled with 
an increase in gut proinflammatory bacteria. While protective (symbiotic) bacteria with anti-inflammatory 
effects are more common in healthy individuals [12, 15].

The mechanism by which this disruption can contribute to the development of NIU is an area of 
interest to many researchers. The following section will illustrate the various mechanisms suggested in the 
literature.

The mechanism underlying dysbiosis-induced uveitis
In recent years, there has been a growing interest in studying the role of microbiota in the development of 
NIU [16]. Dysbiosis is involved in the development of uveitis through four complementary mechanisms, 
which include antigenic or molecular mimicry, increased intestinal permeability, loss of immune intestinal 
homeostasis, and reduced production of beneficial anti-inflammatory metabolites [17].

Molecular mimicry

Antigenic mimicry is a prominent mechanism that contributes to the development of autoimmune diseases. 
In this process, the production of autoreactive T cells is a direct consequence of the cross-reactivity that 
exists between self-antigens and microbial peptides. As a result, pro-inflammatory cytokines are produced, 
causing tissue damage and inflammation [18].

Studies conducted on mice with experimental autoimmune uveitis (EAU) have demonstrated the role 
of this pathogenic mechanism since the severity of uveitis can be reduced and intestinal T helper 17 cells 
(Th17, effector T cells) activation can be minimized by administering oral broad-spectrum antibiotics, 
which eliminate the microbial community. In contrast, the transfer of T cells from a microbiota-grown 
transgenic mouse can induce uveitis in wild mice [4].

Loss of intestinal immune homeostasis

Dysbiosis results in the disruption of intestinal homeostasis, leading to an imbalance between effector T 
cells (Th1 and Th17) and Treg cells, which in turn triggers immune activation by upregulating Th17 [and 
interleukin 17 (IL-17)] and downregulating Treg (and IL-10) [19, 20]. For example, Klebsiella triggers the 
activation of Th (Th1) cells in the intestinal region through antigen-presenting cells (APCs), resulting in the 
secretion of inflammatory mediators like tumor necrosis factor alpha (TNFα) and interferon gamma (IFNγ). 
Bacteroides fragilis is known to generate polysaccharide A, which stimulates Treg cells. Bifidobacterium has 
been observed to stimulate Treg cells as well, which are known to mitigate inflammation by regulating the 
activity of Th1, Th2, and Th17 cells [21]. In addition, it has been observed that mice models with EAU 
showed the presence of T cells originating from the intestine within their ocular tissues, thereby providing 
evidence in favor of the migration of immune cells from the gut to the eye (gut-eye axis) [1, 22].

Increased intestinal permeability

Although the intestinal barrier is naturally permeable to some degree, an increase in permeability resulting 
from dysbiosis-induced mucosal inflammation, facilitates the translocation of microbiota or its products to 
the circulation [23, 24]. These products, namely lipopolysaccharides (LPS) and β-glucan can disseminate 
throughout various tissues via the vascular system. This can result in the direct induction of inflammation 
within targeted organs such as the uveal tissue. The study conducted by Janowitz et al. [25] focused on 
examining intestinal alterations in mice with EAU induced by immunization with inter-photoreceptor 
retinoid-binding protein (IRBP) along with killed Mycobacterium tuberculosis (MTB) antigen as an adjuvant. 
The control group consisted of mice that were immunized with MTB, which did not exhibit any ocular 
inflammation. The research findings indicate that there was a noticeable increase in intestinal permeability 
in mice that were immunized with IRBP, as compared to those that were not immunized. This increase in 
permeability was found to be consistent with the progression of uveitis along with alterations in the 
composition of the intestinal microbiota [25].
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Reduction of anti-inflammatory microbial metabolites

Numerous metabolites produced by gut microbiota have the potential to modulate immune responses. 
SCFAs have been previously mentioned, and are produced via the process of dietary fiber fermentation 
which offers anti-inflammatory effects by stimulating and enhancing Treg cells in the intestinal lamina 
propria, while also inhibiting effector T cells and reducing their migration between the intestine and spleen 
[22, 26]. It was found that adding SCFAs to the diet from outside sources reduced the severity of uveitis in 
mice with EAU [22, 27].

From an immunological perspective, it is necessary to present retinal antigens to the immune system to 
develop autoimmune uveitis. The following section will delve into the hypothesis of the gut-eye axis.

The gut-eye axis
The ocular and brain tissues have been recognized as areas of immunological privilege. The sequestration 
of target antigens behind the blood-retinal barrier and blood-brain barrier leads to their inaccessibility to 
the immune system, thereby impeding the activation of self-reactive T cells that have bypassed thymic 
negative selection and are present in the bloodstream [28, 29]. There is a strong correlation between IBD 
and ocular inflammatory conditions, as approximately 10% of patients with IBD can develop episcleritis, 
uveitis, and conjunctivitis [4]. Multiple studies have demonstrated the presence of a gut-eye axis, wherein 
gut microbiota can impact the immune response in the eye. Furthermore, as previously stated, numerous 
studies have highlighted the significance of the intestinal microbiome and its metabolites, specifically 
SCFAs, in the modulation of essential immune cell functions [30, 31]. NIU is an example of many ocular 
conditions that have been linked to abnormalities in the gut microbiome; others include glaucoma, diabetic 
retinopathy, and age-related macular degeneration [30, 31].

The study conducted by Nakamura et al. [1] showed a significant reduction in uveitis severity in the 
EAU model following oral administration of specific antibiotics. However, when the antibiotics were 
administered intraperitoneally, no effect was observed. These findings underscore the crucial role of gut 
microbiota in influencing uveitis in this model. Moreover, the improvement of uveitis seems to be linked 
with significant changes in bacterial species caused by the administration of oral antibiotics. This leads to 
the differential buildup of effector (Th1 and Th17) and Treg-cell populations in different lymphoid tissues, 
including the intestinal lamina propria and cervical lymph nodes located near the eye. Additionally, Horai et 
al. [28] demonstrated in their research that the microbiota present in the gastrointestinal contents of 
immunized mice exhibited modifications in comparison to non-immunized mice. As well, antibiotic-treated 
mice in the EAU study revealed a diverse microbial composition, which conferred a protective effect against 
uveitis [32].

However, in contrast to the experimental disease, most cases of human autoimmune uveitis cannot be 
attributed directly to an immune system exposure to ocular antigens since these antigens are typically 
sequestered behind a tight blood-retinal barrier in a healthy eye. This presents a paradoxical situation as 
retinal antigens are not typically expressed in the periphery and the activation of retina-specific T cells 
circulating in the periphery is a crucial step to be able to breach the blood-retinal barrier and trigger 
inflammation. This scenario prompts fundamental research regarding the location and manner in which 
autoreactive T cells, capable of recognizing retinal antigens and initiating uveitis, are initially stimulated 
[28].

To study this scenario, the spontaneous uveitis model in R161H mice was used to elaborate the role of 
microbiota in activating the retina-specific T cells and triggering autoimmune uveitis. The administration of 
oral broad-spectrum antibiotics to R161H mice prior to birth led to a depletion of commensal microbiota. 
This resulted in a significant reduction of spontaneous uveitis, which was also observed in R161H mice 
raised under germ-free conditions. The development of uveitis was found to be correlated with an elevated 
population of Th17 cells in the intestinal lamina propria. In mice that were either treated with antibiotics or 
were germ-free, these Th17 cells were observed to be significantly diminished. These findings provide 
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robust evidence in support of the hypothesis that commensal microbiota plays a significant role in the 
pathogenesis of spontaneous uveitis [4].

Clinical studies
Preclinical studies conducted on EAU models have demonstrated the involvement of the gut microbiome in 
the pathogenesis of various immune or inflammatory diseases, such as Behcet’s disease (BD) [33], Vogt-
Koyanagi-Harada disease (VKH), rheumatoid arthritis (RA) [34], psoriatic arthritis (PsA), IBD [35], MS [36], 
spondylarthritis (SpA) [37], and systemic lupus erythematosus (SLE), as shown in Table 1 [38, 39]. While 
clinical studies are necessary to characterize dysbiosis of the gut microbiome and its role in modulating 
immune homeostasis, it is challenging to draw causal conclusions from these studies.

Table 1. Characterization of gut dysbiosis in different autoimmune conditions compared to healthy or disease controls

Study findingsDisease Author Study 
object Increased microbiota Decreased microbiota

Yasar et al., 
2020 [40]

27 BD vs. 
10 HCs

Lachnospiraceae NK4A136, Actinomyces, 
Libanicoccus, Collinsella, Eggerthella, 
Enetrohabdus, Catenibacterium, 
Enterobacter

Bacteroides, Cricetibacter, Alistipes, 
Lachnospira, Dielma, Akkermansia, Sutterella, 
Anaerofilum, Ruminococcease-UCG007, 
Acetanaerobacterium, Copropaacter

Shimizu et 
al., 2019 [41]

13 BD vs. 
27 HCs

Eggerthella lenta, Acidaminococcus 
bifidum, Lactobacillus iners, Streptococcus 
species, Lactobacillus salivarius

Megamonas hypermegale, Butyrivibrio, 
Streptococcus infantis, Filifacto

Oezguen et 
al., 2019 [42]

13 BD vs. 
14 HCs

Parabacteroides, Clostridiales, Geminger, 
Butyricimonas, Actinobacteria, 
Erysipelotrichaceae

Vampirovibrio, unclassified Lachnospiraceae, 
Prevotella

BD

Ye et al., 
2018 [33]

32 BD vs. 
74 HCs

Bilophila spp., Parabacteroides spp., 
Paraprevotella spp., Stenotrophomonas 
spp., Actinomyces spp., Corynebacterium 
spp.

Clostridium spp. (BPB), Methanoculleus spp., 
Methanomethylophilus spp.

Ye et al., 
2020 [39]

55 VKH vs. 
52 HCs

Ramularia, Alternaria, Rhizophagus Methanoculleus, Candidatus 
Methanomethylophilus, Azospirillum

VKH

Li et al., 
2022 [43]

11 VKH vs. 
11 HCs vs. 
20 NIAS

Stomatobaculum, Pseudomonas, 
Lachnoanaerobaculum

Gordonibacter, Slackia

Zhang et al., 
2020 [44]

20 AS vs. 
19 HCs

Prevotellaceae, Actinomycetaceae, 
Dialister, Escherichia-Shigella, Klebsiella

Lachnospiraceae, Bacteroides, Parasutterella, 
Bifidobacterium

Yin et al., 
2020 [45]

127 AS vs. 
123 HCs

Clostridiales bacterium 1_7_47FAA, 
Clostridium hatheway, Clostridium bolteae

Bifidobacterium adolescentis, Coprococcus 
comes, Lachnospiraceae bacterium 5_1_63FAA, 
Roseburia inulinivorans

AS

Klingberg et 
al., 2019 [46]

150 AS vs. 
17 HCs

Proteobacteria, Enterobacteriaceae, 
Bacilli, Streptococcus species, 
Actinobacteria

Bacteroides, Lachnospiraceae

Takahashi et 
al., 2016 [47]

10 IBD vs. 
10 HCs

Actinomyces, Bifidobacterium Bacteroides, Eubacterium, Faecalibacterium, 
Ruminococcus

IBD

Franzosa et 
al., 2019 [48]

121 IBD 
vs. 34 HCs

Bifidobacterium breve, Clostridium 
symbiosum, Ruminococcus gnavusa, 
Escherichia coli, Clostridium 
clostridioforme

Roseburia hominis, Dorea formicigenerans, 
Ruminococcus obeum

HCs: healthy controls; AS: ankylosing spondylitis; NIAS: non-infectious anterior scleritis

Numerous investigations conducted on particular disease populations, including BD and VKH disease, 
have established a robust correlation primarily by comparing the microbiome of patients with the disease 
to that of healthy individuals [33, 39].

Clinical investigations conducted on patients with BD have revealed a modification in the microbiota 
composition, along with notable variations in the gut microbiome composition between BD patients with 
and without uveitis [33]. This implies a correlation between intestinal dysbiosis and the pathophysiology of 
the disease. The observed alterations primarily consisted of a rise in SRB, Stenotrophomonas species, 
Actinomyces species, and Paraprevotella species, accompanied by a decline in BPB and methanogens. The 
lack of equilibrium leads to impairment of the intestinal epithelial barrier, thereby promoting the 
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infiltration of effector molecules into the intestinal epithelial cells [49–51]. A study conducted by Emmi et 
al. [52] wherein patients with BD were randomly assigned to receive diets enriched with butyrate. The 
findings of the study indicate a decrease in disease activity and a reduction in the use of 
immunosuppressive medication, despite the lack of significant changes in blood inflammatory markers 
[52].

The microbial composition of the intestinal microbiome in patients diagnosed with active VKH disease 
exhibits differences in comparison to that of healthy individuals, which is akin to the observed differences 
in patients with BD. Specifically, Paraprevotella spp. were enriched in active VKH patients, whereas BPB like 
Clostridium spp. and methanogens like Methanoculleus spp. were depleted [39, 43].

Regarding the SpA disease spectrum, the initial evidence linking SpA and intestinal inflammation was 
derived from histological analysis of tissue obtained during colonoscopy as part of a research study 
involving patients with SpA and no apparent intestinal symptoms. The study revealed that over 50% of 
patients exhibited subclinical or unrecognized inflammation associated with heightened levels of intestinal 
permeability. Moreover, reactive arthritis and acute anterior uveitis (AAU) can also be triggered by a range 
of enteric infections such as Salmonella, Yersinia, Shigella, and Campylobacter. Furthermore, the efficacy of 
sulfasalazine in addressing arthritis associated with SpA may be ascribed to its established influence on the 
intestinal microbiota and its ability to reduce intestinal permeability [23].

A comparative analysis was conducted to examine the composition of gut microbiota in patients with 
SpA in relation to healthy controls. The results revealed a higher level of microbial richness in SpA patients. 
Furthermore, an observed positive correlation has been identified between the abundance of the bacterial 
genus Dialister and the level of inflammatory activity in SpA. This suggests that Dialister has the potential to 
serve as an indicator of disease activity [53].

The role of human leukocyte antigen
The human leukocyte antigen (HLA), also known as the major histocompatibility complex (MHC) is 
responsible for antigen presentation. However, the precise mechanism through which HLA molecules 
confer susceptibility to diseases is frequently not understood. HLA molecules have been observed to exert 
an impact on the susceptibility of certain immune-mediated diseases, including ankylosing spondylitis [54], 
birdshot chorioretinopathy (BSRC) [55], and Crohn’s disease [56], wherein the presence of autoantibodies 
is not an essential aspect of the condition. This implies that in the aforementioned illnesses, the 
susceptibility produced by the HLA allele may not be working through an autoimmune reaction. Given that 
the gut microbiome plays a role in educating the immune response and exhibits a wide range of antigenic 
diversity, it is plausible to consider an alternative hypothesis that HLA molecules may, in certain cases, 
contribute to disease susceptibility through their impact on the gut microbiome [23]. To test this 
hypothesis that HLA molecules would influence the intestinal bacterial composition, the microbiome of 
HLA-B27-transgenic mice that express HLA-B27, was compared with the microbiome of controls [57, 58]. 
Although these studies lend weight to the idea that human MHC expression affects the composition of the 
gut microbiota, they cannot be held solely responsible for the onset of disease. Because of the low incidence 
of BSRC and SpA among individuals who express the HLA-A29 and HLA-B27 alleles, respectively. This 
points to the importance of additional factors, either genetic or environmental [59–61].

Therapies targeting the gut microbiome
Due to the significant impact of gut microbiome on immunity and metabolism in uveitis, there has been a 
growing trend toward therapeutic interventions that target the gut microbiome in order to modify disease 
outcomes. At present, the primary therapeutic approaches comprise antibiotics, probiotics, prebiotics, 
dietary modifications, and fecal microbiota transplantation (FMT) [62].
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Antibiotics

The use of antibiotics in the treatment of gut microbiome dysbiosis is well-established. As previously 
reported in the literature [4], administration of oral antibiotics demonstrated a reduction in the severity of 
EAU in mice. This was achieved through modulation of the gut microbiome composition, resulting in an 
increase in the frequency of Treg cells in the intestinal lamina propria and extraintestinal lymphoid tissues, 
as well as a decrease in the number of Th1 and Th17 cells, and the level of inflammatory cytokines. The oral 
administration of broad-spectrum antibiotics starting one week prior to the immune induction of EAU 
model has the potential to safeguard mice from severe uveitis. This effect is comparable to that observed in 
germ-free mice, with a reduction in retinal T-cell infiltration and inflammatory cytokine levels in 
comparison to EAU mice [1, 63]. Furthermore, the oral administration of minocycline a broad-spectrum 
tetracycline antibiotic has demonstrated anti-inflammatory and immunomodulatory effects. In 
experimental studies, it has been observed that minocycline has the potential to alter the gut 
microenvironment of mice with EAU. After treatment with minocycline, the relative abundances of pro-
inflammatory bacteria such as Desulfovibrio, Ruminococcus bromii, Streptococcus hyointestinalis, and 
pathogenic Spirochaeta were significantly reduced. In addition, minocycline supplementation can increase 
the growth of Parabacteroides goldsteinii, which has been demonstrated to decrease IL-1β and TNFα levels 
and maintain intestinal permeability thereby significantly reducing the severity of EAU in mice model [64].

Probiotics

Probiotics are defined as live microorganisms that, when administered in sufficient quantities, can provide 
a health benefit to the host. The mechanism of action of probiotics is associated with their capacity to 
compete with pathogenic microorganisms for adhesion sites, exhibit antagonistic effects against these 
pathogens, or regulate the host’s immune response by enhancing Treg cell differentiation. Lactic acid 
bacteria are one of the most commonly used probiotic strains to improve the intestinal barrier and immune 
function [65, 66]. The impact of probiotics on the EAU mouse model was studied in which the experimental 
design involved administering antibiotics to the mice prior to providing them with IRT-5 probiotics, which 
consisted of a combination of mixture of five strains of lactic acid bacteria that includes Bifidobacterium 
bifidum, Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus reuteri, and Streptococcus thermophilus 
[10]. The findings indicate that administering IRT-5 probiotics can potentially modulate the clinical 
manifestations of ocular autoimmunity in comparison to the control group, thereby serving as a viable 
preventive measure against the onset of uveitis. Therefore, the administration of antibiotics can lead to an 
immediate reduction of the gut microbiota, which can be followed by the introduction of beneficial oral 
probiotics, such as IRT-5, to restore the intestinal flora [10, 17]. The achievement of optimal colonization of 
probiotics in the intestinal tract poses a substantial challenge that necessitates careful consideration [17].

Prebiotic

The prebiotics concept was introduced for the first time in 1995 by Glenn Gibson and Marcel Roberfroid 
[67]. Prebiotic was described as “a non-digestible food ingredient that beneficially affects the host by 
selectively stimulating the growth and/or activity of one or a limited number of bacteria in the colon, and 
thus improves host health”. Fructooligosaccharides (FOS), inulin, and galactooligosaccharides (GOS) are 
recognized as conventional prebiotics that have been shown to have a significant positive impact on human 
health as a result of their ability to enhance the presence of lactobacilli and bifidobacteria by generating 
advantageous metabolites, facilitating calcium absorption, mitigating protein fermentation and pathogenic 
bacteria, reducing intestinal permeability, and augmenting the immune system [68].

Dietary modifications

Various lifestyle factors, including dietary habits, socioeconomic status, physical inactivity, smoking, and 
environmental factors, have the potential to disrupt the equilibrium of the microbiome ecosystem [69]. 
Among all these factors, diet is possibly the most crucial, as it may influence both the richness and diversity 
of microbiota which may as a consequence impact the immune system. For example, a high-fiber diet such 



Explor Med. 2023;4:1001–13 | https://doi.org/10.37349/emed.2023.00190 Page 1008

as unrefined cereals, fruits, vegetables, and legumes is believed to enhance the intestinal microecological 
environment by increasing the gut microbiome’s capacity to produce endogenous SCFAs [70]. Moreover, 
the consumption of plant-based protein has been reported to increase gut-commensal Bifidobacterium and 
Lactobacillus which increase the intestinal SCFA levels, while additionally decreasing the pathogenic 
Bacteroides fragilis and Clostridium perfringens. Consumption of animal-based protein was found, on the 
other hand, to increase the number of bile-tolerant anaerobes like Bacteroides, Alistipes, and Bilophila [71, 
72]. Research studies in both animals and humans have demonstrated a correlation between high fat diets 
and reduced richness and diversity of the intestinal microbiota [73]. Additionally, studies have 
demonstrated that exogenous administration of propionate and butyrate can modulate the immune system 
and potentially serve as treatment strategies by reducing the severity of EAU in animal models [22, 27].

FMT

FMT, namely stool transplantation, involves the replacement of a patient’s original gut microbiome with the 
entire fecal microbiome of a healthy donor. This procedure aims to modify the microorganism composition 
within the gut. The utilization of FMT is currently being studied for a diverse range of medical conditions. It 
has received authorization for the treatment of recurrent colitis induced by Clostridium difficile and has 
demonstrated significant effectiveness in this respect [74]. EAU mouse models developed more severe 
uveitis after receiving FMT from BD or VKH patients, accompanied by increased IL-17 and IFNγ production. 
However, there is still not enough clinical evidence to support its use in other conditions like IBD, 
ankylosing spondylitis, or uveitis because of its substantial interindividual variability [75].

Conclusions
The current literature supports the possible causality between intestinal dysbiosis and immune mediated 
uveitis. There is still much to learn about the microbiome, and many questions remain unanswered, such as 
how the microbiome is established in early life, how it is affected by environmental factors, and how it can 
be manipulated to promote health and prevent disease. The complexity of the microbiome presents 
challenges in studying and understanding its role in human health and disease, as well as developing 
effective treatments or interventions. The gut-eye axis, which has been proposed as a potential explanation 
for the microbiome effect on ocular inflammation and diseases, is not yet well-understood and requires 
further research. By exploring this area, researchers can expand the current knowledge base and 
potentially uncover new therapeutic targets for these conditions. In the future, the ability to modulate the 
composition of the intestinal microbiome through dietary supplementation or the use of certain 
medications may pave the road for new therapeutic modalities.
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