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Abstract
The global prevalence of obesity and type 2 diabetes mellitus (T2DM)—the most common metabolic 
disorders—has reached epidemic proportions over the past half-century, with obesity being a key driver of 
insulin resistance and T2DM development. These disorders are characterized by metaflammation (chronic 
low-grade inflammation across multiple metabolic organs like adipose tissue, liver, muscle, and the gut), 
which disrupts metabolic homeostasis, exacerbates insulin resistance, impairs insulin secretion, and links 
to other comorbidities such as cardiovascular diseases. A major advance in understanding inflammation 
resolution is the identification of specialized pro-resolving mediators (SPMs), a family of lipid mediators 
including resolvins, lipoxins, protectins, and maresins. Derived from polyunsaturated fatty acids (e.g., EPA, 
DHA), SPMs actively regulate inflammation resolution by constraining pro-inflammatory cell infiltration 
(e.g., neutrophils), promoting anti-inflammatory macrophage polarization (M2), enhancing efferocytosis 
(clearance of apoptotic cells), and preserving tissue barrier integrity—without inducing 
immunosuppression. This review summarizes evidence from human and animal studies on obesity-related 
metaflammation in metabolic tissues and the role of SPMs in resolving this inflammation. It details SPM 
mechanisms (e.g., maintaining adipose tissue homeostasis, improving insulin sensitivity, alleviating hepatic 
steatosis) and highlights their dysregulation in obesity (e.g., impaired biosynthesis, reduced receptor 
expression) as a critical driver of metabolic dysfunction. Finally, the review discusses the therapeutic 
potential of SPM-targeted strategies (e.g., ω-3 PUFA supplementation, SPM receptor activation) for 
alleviating obesity, T2DM, metabolic dysfunction-associated steatotic liver disease (MAFLD), and other 
metabolic disorders, along with future research directions in this field.
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Introduction
In the last half-century, the prevalence of obesity and type 2 diabetes mellitus (T2DM) has been rapidly 
increasing on a global scale and has now reached epidemic proportions [1–4]. Obesity is the crucial cause of 
insulin resistance and a driver of the global epidemic of type 2 diabetes [5]. As a well-recognized underlying 
abnormality, insulin resistance stems from an imbalance between energy intake and expenditure—one that 
favors the pathways of nutrient storage. These pathways evolved to promote energy conservation (rather 
than utilization) during periods of scarcity, but in the modern context of excess energy, they exacerbate the 
development of obesity [6]. At the outset of the energy imbalance, lesions of white adipose tissue and 
circulating metabolites modulate tissue communication and insulin signaling [7, 8]. When it sinks into 
persistent state, obesity-related chronic inflammation accelerates these abnormalities [9]. Obesity-induced 
chronic tissue inflammation underlines the predominant role of dysmetabolism under these circumstances 
[9, 10]. Chronic tissue inflammation exerts a series of effects on adipose tissue, muscle, liver, pancreatic 
islets, the gut, and hypothalamus [5]. These inflammatory shifts conduce to insulin resistance (fat, muscle, 
liver) [11, 12], reduced insulin secretion (islets) [13], gut microbial dysbiosis and increased intestinal 
permeability (gut) [14], and increased food intake (hypothalamus) [15].

Obesity-induced excessive inflammation is diffusely appreciated to be a unifying element in many 
chronic diseases, including cardiovascular diseases (CVDs) [16], cancer [17], and metabolic syndrome [18], 
and thus is a public health issue. Comprehending endogenous monitoring points within the inflammatory 
response will inspire us with novel perspectives on pathogenesis and therapeutic approaches to 
dysmetabolism. The acute inflammatory response is divided into initiation and resolution by pathologists. 
After the identification of lipid mediators with pro-resolving competence that could be biosynthesized from 
Ω-3 essential fatty acids, some reports demonstrated that resolution of self-limited acute inflammation is an 
active, programmed reaction but not merely a process of passive fluxing of chemoattractant cytokines [19, 
20]. For these metabolites to play the role of resolution, they have to be synthesized in ample amounts in 
vivo to evoke bioactions. The Ω-3 fatty acids EPA and DHA, found in deep-sea fish oils, have been thought to 
have anti-inflammatory capabilities for a long while [21]. Resolving inflammatory exudates are comprised 
of structurally different families of signaling molecules—resolvins, protectins, and maresins, collectively 
termed specialized pro-resolving mediators (SPMs) [22]. SPMs are agonists with the potential to evoke key 
cellular resolution processes, namely restricting the infiltration of neutrophils and promoting macrophage 
to devour apoptotic cells [23].

Here, we focus on the mechanisms of SPMs in resolution that may work in metabolic disease, as it deals 
with the effects of chronic inflammation on metabolic disorders. We also aim to present a balanced view by 
addressing existing controversies in the field and briefly discussing prospective orientation in this 
gradually growing field.

The linkage between chronic inflammation and metabolic disease
Over the past few decades, there has been a great body of studies exploring the underlying cellular and 
physiologic mechanisms of how obesity-related inflammation initiates and aggravates insulin resistance 
and glucose intolerance (Figure 1). The effective mechanistic link that was established for the first time 
between inflammation and insulin resistance is focused on tumor necrosis factor-α (TNF-α) [24, 25]. 
Activation of other inflammatory signals, such as Jun amino-terminal kinases (JNKs), inhibitor of nuclear 
factor-kappaB kinase (IKKβ), and nuclear factor k-light-chain-enhancer of activated B cells (NF-κB), are the 
characteristics of chronic tissue inflammation induced by obesity, and genetic knockout or activity 
inhibition of these factors also results in protection from obesity-related inflammation and insulin 
resistance [12, 15, 26–28].

Metabolic inflammation, first mentioned in adipose tissue, has been evaluated at great length with 
numerous studies [25, 29–33]. Nevertheless, there is no doubt that adipose tissue is neither the only site of 
metabolic inflammation nor could it be considered as the sole participant in metabolic homeostasis or 
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Figure 1. The metabolic consequences of obesity on distinct organs. Obesity relevant chronic tissue inflammation is one of 
the key mechanisms of dysmetabolism. The effects on the liver, adipose tissue, muscle, islets, the gut, and the central nervous 
system (CNS) induced by chronic tissue inflammation are listed.

relevant lesion. Subsequent studies have demonstrated that pro-inflammatory signals also increase in the 
other two classical insulin target tissues (liver [12, 28, 34], and muscle [11, 27, 35]), as well as in islets [13], 
the hypothalamus [15], and the gastrointestinal tract [14]. Metaflammation, regarded as chronic metabolic 
inflammation in multiple organs, is involved in metabolic disease (Figure 1). The interactions between 
inflammatory cells with themselves and their stromal components in the adipose tissue, liver, muscle, and 
other metabolic organs are a critical determinant of metabolic homeostasis and pathogenesis of metabolic 
disease [36]. Hence, the bidirectional interactions between inflammatory cells and their stromal 
components, as well as the systemic impact of metabolic inflammation, are crucial factors in determining 
physiological and pathological events of metabolism. Given the critical role of metaflammation in disrupting 
metabolic homeostasis across multiple organs and driving metabolic diseases, identifying effective 
regulators to modulate this chronic low-grade inflammation has become a key focus in related research. 
These regulators, which can target the bidirectional interactions between inflammatory cells and stromal 
components while mitigating the systemic impact of metaflammation, are essential for intervening in the 
pathogenesis of conditions like obesity, and SPMs emerge as prominent candidates in this context.
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SPMs: key regulators in the pathogenesis of obesity via modulating 
metaflammation
SPMs, including resolvins, lipoxins, protectins, and maresins (Table 1), play a pivotal regulatory role in the 
pathogenesis of obesity by modulating metaflammation—the low-grade, chronic inflammation that 
characterizes obesity and links it to metabolic disorders [37–39].

Table 1. Summary of SPMs: classification, precursors, and functions.

Class Subtypes/Structures Precursors Key functions

Resolvins E-series (RvE1, RvE2): 18-
carbon, 3 double bonds;

D-series (RvD1–D6): 22-
carbon, 4 double bonds

E-series: 
EPA;

D-series: 
DHA

Inhibit neutrophil migration and pro-inflammatory cytokine 
release; Promote macrophage phagocytosis and resolution of 
inflammation; Enhance epithelial barrier function; Reduce 
atherosclerosis by suppressing endothelial adhesion molecules

Lipoxins LXA4, LXB4: 20-carbon, 4 
double bonds;
15-epi-LXA4: Isomer with 
distinct receptor affinity

Arachidonic 
acid (AA)

Block neutrophil recruitment and adhesion molecule expression; 
Induce apoptosis of pro-inflammatory macrophages; Protect 
against oxidative stress in tissues; Reduce airway 
hyperresponsiveness in asthma

Protectins PD1 (Neuroprotectin D1): 22-
carbon, 5 double bonds;

PDX: Modified structure with 
enhanced stability

DHA Protect neurons from excitotoxicity and oxidative damage; 
Modulate microglial polarization toward anti-inflammatory M2 
phenotype; Improve cognitive function in Alzheimer’s models; 
Reduce hepatic steatosis by enhancing fatty acid oxidation

Maresins MaR1, MaR2: 22-carbon, 4 
double bonds

MCTRs (maresin-coupled 
tissue repair molecules): 
Peptide-lipid conjugates

DHA Promote macrophage clearance of apoptotic cells; Inhibit 
Th1/Th17 cell differentiation while enhancing Treg cell function; 
Accelerate skin and corneal wound healing

SPMs: specialized pro-resolving mediators; EPA: eicosapentaenoic acid; DHA: docosahexaenoic acid.

Under physiological conditions, SPMs maintain adipose tissue homeostasis by constraining 
inflammatory amplification [40, 41]. They inhibit the migration of monocytes to visceral adipose tissue and 
their differentiation into pro-inflammatory M1 macrophages, while promoting the polarization of anti-
inflammatory M2 macrophages [40, 42, 43]. This reduces the release of pro-inflammatory cytokines, 
preventing adipocyte dysfunction and preserving insulin sensitivity—for instance, maresin 1 enhances 
adipocyte glucose and fatty acid uptake by activating insulin signaling pathways [44, 45]. Additionally, 
SPMs protect intestinal barrier integrity, limiting lipopolysaccharide (LPS) translocation and subsequent 
toll-like receptor 4 (TLR4)-mediated systemic inflammation, which indirectly suppresses aberrant adipose 
tissue expansion [46–48].

In obesity, however, SPM function is severely impaired, fueling disease progression [49–53]. Nutrient 
excess and adiposity disrupt SPM biosynthesis: insufficient ω-3 polyunsaturated fatty acid (PUFA) intake 
(the precursor of resolvins/protectins) and elevated oxidative stress reduce the activity of lipoxygenases 
(key enzymes for SPM production) [54–56]. Concurrently, adipocytes and immune cells downregulate SPM 
receptors (e.g., ALX/FPR2, GPR32), diminishing SPM-mediated anti-inflammatory signaling [57, 58]. This 
“synthesis deficit plus functional resistance” breaks inflammatory resolution: persistent pro-inflammatory 
cues induce adipocyte insulin resistance, impair glucose uptake, and promote leptin resistance—creating a 
vicious cycle of inflammation, metabolic dysfunction, and further fat accumulation [50, 52, 59, 60].

Notably, reduced SPM levels correlate with obesity-related comorbidities [e.g., metabolic dysfunction-
associated steatotic liver disease (MAFLD), atherosclerosis], as impaired inflammation resolution 
exacerbates hepatic lipid deposition and vascular endothelial damage [61–63]. Clinical data confirm lower 
serum SPM concentrations (e.g., resolvin E1) in obese individuals, with SPM levels inversely associated with 
body weight and inflammatory markers [51, 52, 64].

It is noteworthy that a large body of current research is primarily correlational. Although reduced SPM 
levels are associated with obesity-related comorbidities, such as MAFLD and atherosclerosis, this is because 
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impaired resolution of inflammation exacerbates hepatic lipid deposition and vascular endothelial damage. 
Clinical data also confirm that obese individuals have lower serum SPM concentrations (e.g., resolvin E1), 
and SPM levels are negatively correlated with body weight and inflammatory markers. However, these 
studies only demonstrate a correlation between SPM and obesity; they cannot confirm that SPM is a 
causative factor of obesity, and the causal relationship between the two remains unclear.

Controversies surrounding SPMs: existence, concentration, and receptor 
responsiveness
Multiple laboratories have reported difficulties in detecting SPMs in physiological samples (e.g., serum, 
tissue homogenates) at concentrations sufficient to evoke the proposed bioactions [65, 66]. Potential 
explanations for this discrepancy include technical limitations (e.g., loss of SPMs during sample extraction, 
lack of highly specific antibodies for immunoassays) and tissue-specific localization (e.g., SPMs may act 
locally in tissues at high concentrations but dilute rapidly in circulation). A number of studies have 
challenged the responsiveness of proposed SPM receptors to their ligands [65, 67, 68]. These findings 
suggest that either SPMs require co-receptors or accessory molecules to exert their effects, or that some 
reported receptor-ligand interactions may be context-dependent (e.g., cell-type specific).

A few studies have even questioned the existence of endogenously produced SPMs with functional 
relevance [69]. However, these results may be attributed to compensatory mechanisms (e.g., upregulation 
of other anti-inflammatory pathways) or the use of experimental conditions that do not fully mimic 
physiological inflammation [54, 70, 71].

SPMs are leads for resolution physiology and thus may play as novel 
therapeutic strategies for metabolic disease
SPMs are lipid micromolecules that include lipoxins, resolvins, protectins, and maresins that are 
biosynthesized from distinct PUFAs at the onset of inflammation (Table 1) [65, 72, 73]. As part of the 
inflammatory initiation phase, Ω-6 fatty acid arachidonic acid transforms into lipoxins to begin the 
resolution of the acute inflammatory response [74], whereas resolvins, protectins, and maresins are 
derived from the Ω-3 essential fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) 
[19, 75, 76]. Limited to the length, lipoxins aren’t described next, but we have to emphasize that this doesn’t 
mean that lipoxins are trivial in metabolic diseases. SPMs evoke the active resolution processes of 
inflammation by restraining the infiltration of polymorphonuclear neutrophil (PMN) into tissues, inhibiting 
the production of pro-inflammatory mediators, regulating the apoptosis of PMN and the efferocytosis of 
macrophages, and promoting the dilution of chemokine [22, 23]. In general, these SPMs commence 
resolution and regeneration programs through regulation of innate immunocytes in an inflammatory 
environment. Here, we cover the resolving functions of SPMs and focus on SPMs’ actions in metabolic 
disease on the basis of their inflammatory pathogenesis (Figure 2).

SPMs play crucial roles in the vascular response and neutrophil trafficking, from acute inflammation 
initiation to resolution or continuation. The SPMs, lipoxins, resolvins, protectins, and maresins are 
produced during this self-limited process. When acute inflammation occurs in local tissues, a large number 
of chemokines (PGE2, PGI2 (vasodilation), and LTB4 (chemotaxis and adhesion) are released to make the 
neutrophils chemotactic to the tissue. As one of the initiating parts of resolution, eicosanoids are converted 
to lipoxins, signaling and beginning the end of the acute inflammatory response [74, 77, 78]. Lipoxins and 
resolvins limit the infiltration of polynuclear neutrophils and promote their apoptosis. Resolving 
macrophages induced by resolvins and protectins then clear the apoptotic neutrophils in a process known 
as efferocytosis, which restores the immunity homeostasis of the inflammatory tissue. Resolution failure 
leads to the continued accumulation of various inflammatory factors, the development of chronic 
inflammation (which can be suppressed by resolvins), and fibrosis (which can be inhibited by resolvins and 
lipoxins). Figure 2 shows that resolvins play a key role in different resolution processes for acute and 
chronic inflammation, suggesting that they may be the most potent of the SPMs.



Explor Endocr Metab Dis. 2026;3:101453 | https://doi.org/10.37349/eemd.2026.101453 Page 6

Figure 2. The role of SPMs in the initiation, resolution, and chronic progression of acute inflammation.

Resolvins
Resolvins, including the D, E, and T series, are endogenous lipid metabolites biosynthesized during the 
resolution phase of acute inflammation from the ω-3 PUFAs (Table 1), primarily EPA, DHA, and 
docosapentaenoic acid (DPA) [79–81]. Their anti-inflammatory and pro-resolving properties have been 
confirmed with great evidence from multiple animal inflammatory models [82–86]. Resolvins have been 
evaluated to evoke the resolving process not only in acute inflammation but also in chronic inflammation. 
Sima et al. [87] summarized the role of RvE1 in inflammation resolving and focused on its function in type 2 
diabetes in light of its inflammatory pathogenesis (Figure 1). In population-based research on the 
association between resolvin E1 (RvE1) and adiposity, univariate analysis has linked obesity to reduced 
RvE1, and multiple regression analysis has further shown plasma RvE1 to be negatively correlated with 
various adiposity metrics (BMI, waist circumference, waist-to-height ratio, abdominal subcutaneous fat 
volume, skinfold thicknesses) in both genders [51]. Recent studies have demonstrated that resolvins have 
the function of treating metabolic diseases and their complications, mainly diabetes, which illustrates the 
therapeutic potential of resolvins in the field of metabolic disorders [52, 88–94].

Protectins
Protectin D1 (PD1), currently the most active protectin, also referred to as neuroprotectin D1 (NPD1), 
which in vivo possesses a potent anti-apoptotic, anti-inflammatory, and neuroprotective activity in its 
localized tissues (Table 1) [83, 95]. The main PD1 precursor, DHA, exists mainly in tissues such as the 
retinal synapses, photoreceptors, the lungs, and the brain, implying that PD1 are supposed to protect these 
tissues most possibly and less likely to participate in metabolism [96–98]. However, PD1 exerts a protective 
effect against metabolic dysfunction-associated steatohepatitis (MASH) in mice by suppressing the 
activation of TLR4-mediated downstream signaling pathways [99]. Moreover, protectin DX (PDX), an 
isomer of PD1, has been demonstrated to alleviate insulin resistance in db/db mice and simultaneously 
optimize core parameters linked to the diabetic condition in T1DM mouse model [100, 101]. In addition, 
White et al. [102] reported that both PD1 and PDX were capable of modulating PPARγ transcriptional 
activity, which showed their potential of anti-obesity and anti-diabetes.
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Maresins
At present, there are mainly three kinds of maresins found, namely maresin 1, maresin2, and maresin-Ls 
(can be divided into maresin-L1 and maresin-L2), which all derive from DHA, and possess robustly anti-
inflammatory, pro-resolving, protective, and pro-healing properties similar to other SPMs (Table 1) [72, 
103, 104]. Martínez-Fernández et al. [105] suggested that treatment with maresin 1 can improve insulin 
sensitivity and attenuate adipose tissue inflammation in ob/ob and diet-induced obese mice. In addition to 
the anti-inflammatory effects of maresin 1, some studies believe that the ability to regulate FGF21 
contributes to its beneficial metabolic effects [106]. Jung et al. [107] confirmed that maresin 1 can 
ameliorate liver steatosis by decreasing lipogenic enzymes in ob/ob and diet-induced obese mice, which 
showed that maresin 1 may be a practical therapeutic strategy to treat MAFLD [107, 108]. In addition, 
maresin 1 modulates the basal expression levels of adipokines in human adipocytes and mitigates the TNF-
α-induced aberrations in adipokine expression under in vitro conditions, and such regulatory effects may 
underlie the metabolic advantages exerted by this lipid mediator [109].

Future prospects
Current insights into SPMs provide a clear roadmap for developing clinical treatment strategies that 
address the root of metabolic disorders—metaflammation—while avoiding the limitations of traditional 
anti-inflammatory therapies. These strategies prioritize restoring SPM function, leveraging their ability to 
resolve inflammation without immunosuppression, and can be tailored to target obesity, T2DM, and 
MAFLD specifically. SPMs have emerged as latent regulators in physiological pathways of resolution and 
chronic inflammation that can improve obesity, T2DM, MAFLD, and other metabolic diseases [87, 107, 110] 
beyond the roles of their precursors in metabolism and membrane dynamics. In view of the ability of SPMs 
to initiate inflammation resolution without immunosuppression, it is promising that therapeutic delivery of 
lipid agonists in the form of SPMs may be a prospective strategy for alleviating the resolving failure and 
remodeling homeostasis in chronic metabolic diseases, including obesity, T2DM, MAFLD, as well as CVD, 
and so on [87, 90, 107]. Here, we can imagine a future where SPMs are well understood, play a role in 
distinct metabolic diseases, and serve as supplements to existing therapeutic strategies.

Conclusions
The global epidemics of obesity and type 2 diabetes are fundamentally fueled by a state of chronic, low-
grade inflammation known as metaflammation, which disrupts metabolic health across multiple organs. 
SPMs, such as resolvins and maresins, represent the body's own sophisticated system for actively shutting 
down this inflammation, which goes beyond mere suppression to orchestrate complete resolution and 
tissue repair. In obesity, this natural defense is compromised; a combination of impaired SPM production 
and tissue resistance creates a resolution deficit, allowing inflammation to persist and drive metabolic 
deterioration. While human data primarily show correlation, animal studies robustly demonstrate that 
restoring specific SPM levels can directly improve insulin sensitivity, reduce liver fat, and calm adipose 
tissue inflammation. This reveals a profound therapeutic potential: instead of broadly suppressing immune 
responses, we can aim to treat metabolic disease by replenishing these native resolution signals. The future 
lies in leveraging these findings to develop strategies that reignite the body’s innate ability to resolve 
inflammation, thereby restoring metabolic equilibrium from within.
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