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Abstract

Background: Heart failure (HF) remains a growing global health problem, with nearly half of all cases
attributed to HF with preserved ejection fraction (HFpEF) and its precursor, left ventricular diastolic
dysfunction (LVDD). Although echocardiography is the diagnostic gold standard, its high cost and limited
availability restrict its use for large-scale screening. In contrast, the electrocardiogram (ECG) is inexpensive
and widely accessible. Recent advances in artificial intelligence (Al) have created opportunities to leverage
ECG data for the early detection of cardiac dysfunction. The objective of this study was to systematically
review and meta-analyze the diagnostic performance of Al-based ECG models for detecting cardiac
dysfunction.

Methods: The QUADAS-2 tool was used to assess the risk of bias. Pooled sensitivity and specificity were
estimated using a bivariate random-effects model, with heterogeneity quantified using the I? statistic. Pre-
specified subgroup analyses were conducted according to clinical endpoint and Al model type.

Results: Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
guidelines, nine eligible studies evaluating Al algorithms applied to ECG data for the detection of HFpEF
were identified. Considerable methodological and population heterogeneity was observed across studies.
Risk of bias was generally low for reference standards, although concerns were noted in patient selection.
The pooled specificity of AI-ECG models was high at 0.83 [95% confidence interval (CI): 0.74-0.89], while
pooled sensitivity was 0.82 (95% CI: 0.70-0.90). Both estimates demonstrated extremely high
heterogeneity (I* > 96%). Subgroup analyses by endpoint and model type did not explain this variability.
Discussion: Al-enhanced ECG models show good diagnostic accuracy, specifically in ruling out cardiac
dysfunction due to their high specificity. However, the high and unexplained heterogeneity across these
studies limits the immediate generalizability of the results. Large, prospective validation studies across
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diverse populations are essential before these models can be confidently adopted into routine clinical
practice.
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Introduction

Heart failure (HF) is a life-threatening syndrome with rising global prevalence and is associated with
significant morbidity, mortality, and healthcare expenditure [1-3]. Globally, HF affects an estimated 64
million individuals. Nearly half of all HF cases are now attributed to HF with preserved ejection fraction
(HFpEF) [4, 5]. Moreover, with the aging of the population, the prevalence of HFpEF is expected to increase
in the coming years, reflecting both increased life expectancy and the expanding proportion of older
individuals in the general population [5]. The pathophysiological hallmark of HFpEF is left ventricular
diastolic dysfunction (LVDD), which often develops gradually and may remain clinically silent until
progression to overt HF [6]. Therefore, early diagnosis of HFpEF can play a key role in facilitating prompt
initiation of drugs that reduce the burden of HF in this population [7, 8].

Currently, echocardiography serves as the gold standard for diagnosing LVDD and HFpEEF, offering
detailed structural and functional insights [9, 10]. However, it relies on costly equipment and specialized
expertise, making it unsuitable for large-scale screening. Invasive methods, such as right heart
catheterization, provide definitive confirmation of elevated filling pressures but are restricted to selected
cases given their risks and costs [11]. These limitations contribute to delays in diagnosis, reducing
opportunities for timely intervention.

The electrocardiogram (ECG), in contrast, is inexpensive, widely available, and noninvasive. While
subtle electrical changes in HFpEF and LVDD may appear on ECGs, they often go unnoticed by conventional
human interpretation. In the recent past, with the development and widespread application of artificial
intelligence (Al) in medicine, we have entered a novel era of diagnosis of disease and management. The
efficient processing ability of Al achieves specific goals and helps clinicians a lot in clinical decision-making.
Al mainly includes machine learning (ML) and deep learning (DL), and DL consists of multiple processing
layers and is capable of processing more complex data [12]. The application of Al has contributed to clinical
practice in terms of aiding diagnosis [13] and early detection [14].

One area of interest that is relevant to our topic is the combination of Al with ECG for the detection of
HF, which may overcome some difficulties in clinical diagnosis [15]. Several studies have specifically
investigated their role in detecting HFpEF, LVDD, or raised filling pressures. However, these studies vary a
lot in their design, target populations, and diagnostic endpoints. To synthesize this heterogeneous evidence,
we performed a systematic review and meta-analysis to estimate the pooled diagnostic performance of Al-
based ECG models for the detection of HFpEF, LVDD, and related cardiac dysfunction. HFpEF, LVDD, and
elevated left ventricular filling pressures were considered related clinical manifestations along the same
disease continuum. HFpEF represents the clinical syndrome, while LVDD and elevated filling pressures
reflect earlier or mechanistic stages detectable by imaging or invasive assessment.

Materials and methods
Protocol and reporting

This systematic review and meta-analysis followed the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) guidelines [16].

Eligibility criteria and information sources

We included studies that (1) applied an Al or ML algorithm; (2) used ECG data (single-lead or 12-lead) as
the input; (3) focused on detecting or predicting cardiac dysfunction related to impaired diastolic function,
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including HFpEF, LVDD, or objectively confirmed elevated filling pressures; and (4) reported sufficient data
to construct a 2 x 2 contingency table. We found a total of nine studies that were available for inclusion in
this analysis.

Study selection and search strategy

PubMed, Cochrane, CTG, and Google Scholar databases were systematically searched to identify original
literature that evaluated the diagnostic accuracy of Al algorithms using ECG data for people with HFpEF.
The full search strategies for all databases are provided in Supplementary materials.

Two review authors independently performed the literature search and title/abstract screening
against predefined criteria, with full texts reviewed for eligibility, and the articles were excluded that were
not associated with the research topic. Nine studies met the inclusion criteria and were incorporated into
both qualitative and quantitative synthesis. Results of the literature search are shown in Figure 1.
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Figure 1. Flow diagram of the study selection process. Adapted from [16]. © Author(s) (or their employer(s)) 2019. CC BY.
PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses.

Data extraction

For each study, we extracted the first author, publication year, study design, population characteristics,
AI/ML model type, diagnostic endpoint, and reported performance metrics. For the meta-analysis, we
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obtained or derived true positives, false positives, true negatives, and false negatives from data reported in
the original publications, including confusion matrices, diagnostic accuracy tables, or reported sensitivity,
specificity, and sample size. No Al models were trained or revalidated by the authors; all analyses were
based exclusively on published study results.

Risk of bias assessment

Quality of studies was independently assessed using the QUADAS-2 tool [17], which evaluates four
domains: Patient Selection, Index Test, Reference Standard, and Flow/Timing. Each was classified as low,
high, or some risk of bias. Two reviewers independently performed the data extraction and quality
assessment. Disagreements were resolved through discussion and independent assessment by another
researcher to reach a consensus. A total of two disagreements (out of 2 assessments) were identified, all of
which were resolved through consensus discussion.

Statistical analysis

Our primary outcomes were the pooled sensitivity and specificity of AI-ECG models. Sensitivity was
calculated as TP/(TP + FN), representing the proportion of true disease cases correctly identified.
Specificity was calculated as TN/(TN + FP), representing the proportion of non-diseased cases correctly
classified. We used bivariate random-effects for meta-analysis, allowing joint estimation of sensitivity and
specificity while accounting for their correlation. This approach produced a summary operating point and a
hierarchical summary receiver operating characteristic (SROC) curve with 95% confidence intervals (Cls)
and prediction intervals.

Heterogeneity was quantified using the I statistic, with values above 75% considered substantial. To
explore potential sources of heterogeneity, we conducted subgroup analyses by (1) clinical endpoint
(HFpEF, LVDD, or increased filling pressure) and (2) Al model type (DL vs. classical ML). All analyses were
performed in R.

HFpEF, LVDD, and elevated filling pressures were analyzed together as diagnostic endpoints reflecting
diastolic dysfunction, given their shared pathophysiological basis and overlapping diagnostic criteria.

Results
Study selection and characteristics

The study selection process is depicted in the PRISMA flow diagram (Figure 1). Nine studies were
ultimately included. They varied a lot in their designs, study populations, and methodological approaches
(Table 1). A wide range of Al models were evaluated, including DL architectures such as convolutional
neural networks (CNNs) and classical algorithms like Random Forest and XGBoost. ECG inputs ranged from
standard 12-lead recordings to new single-lead data from smartphones and wearable patches. Clinical
endpoints included the spectrum of cardiac dysfunction, including HFpEF, LVDD, and invasively confirmed
elevated filling pressures.

Table 1. Summary of included studies.

Author Year TP FN FP TN Al/ML model ECG type Primary endpoint
type
Kwon et al. [18] 2021 1,320 388 1,844 8,403 Deep learning 12-lead, 6-lead, HFpEF
single-lead
Sengupta et al. 2018 107 26 9 46 Classical ML  12-lead signal- Abnormal myocardial
[19] processed relaxation
Kuznetsova et al. 2022 30 1 5 214 Classical ML Single-lead LVvDD
[20] (smartphone)
Kagiyama et al. 2020 51 25 62 250 Classical ML  12-lead signal- LVDD/Abnormal
[21] processed relaxation
Lee et al. [22] 2024 18,205 3,678 13,136 63,744 Deep learning 12-lead Increased filling pressure
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Table 1. Summary of included studies. (continued)

Author Year TP FN FP TN AI/ML model ECG type Primary endpoint
type

Sabovcik et al. 2021 171 81 144 1,011 Classical ML  12-lead LvDD

[23]

Unterhuber etal. 2021 93 1 44 65 Deep learning 12-lead HFpEF

[24]

Schlesinger etal. 2025 836 393 848 2,543 Deep learning Single-lead (wearable) Elevated mPCWP
[25]

Gao et al. [26] 2025 43 17 16 41 Deep learning 12-lead HFpEF risk (elevated
LVEDP)

ECG: electrocardiogram; HFpEF: heart failure with preserved ejection fraction; LVDD: left ventricular diastolic dysfunction; ML:
machine learning; Al: artificial intelligence.

Risk of bias assessment

The QUADAS-2 evaluation is summarized in Figure 2. All nine included studies were judged to have a low
risk of bias in the reference standard domain, as each employed appropriate diagnostic comparators such as
guideline-based echocardiography or invasive hemodynamic assessment. In contrast, patient selection was
the most frequent source of concern. Several studies relied on retrospective designs, thus limiting the
representativeness of their findings. Additional concerns were noted in the flow and timing domain when
subsets of participants were excluded from final analyses, as a result, introducing selection bias.
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Figure 2. Risk of bias summary based on the QUADAS-2 assessment. Each row represents an included study, and
columns represent the four domains of the QUADAS-2 tool (D1: patient selection, D2: index test, D3: reference standard, D4:
flow & timing). Green indicates a low risk of bias, while yellow indicates some concerns.

Diagnostic accuracy

Forest plots of individual study estimates for sensitivity and specificity are shown in Figures 3 and 4.
Reported sensitivities varied widely, ranging from 0.67 to 0.99 while specificities ranged from 0.60 to 0.98.
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Figure 3. Forest plot of sensitivity for the detection of cardiac dysfunction. Each square represents the point estimate of
sensitivity for an individual study, with the horizontal lines indicating the 95% confidence interval. A pooled estimate from the
bivariate random-effects model is shown at the bottom.
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Figure 4. Forest plot of specificity for the detection of cardiac dysfunction. Each square represents the point estimate of
specificity, proportional to its weight in the analysis. The horizontal lines indicate the 95% confidence interval. The diamond
represents the pooled specificity of 0.83 [0.74, 0.89] from the random-effects model, with significant heterogeneity (” = 96.5%).

The bivariate random-effects meta-analysis produced a pooled sensitivity of 0.82 (95% CI: 0.70-0.90)
and a pooled specificity of 0.83 (95% CI: 0.74-0.89). Both outcomes demonstrated extremely high and
statistically significant heterogeneity (I > 96%, p < 0.0001).

To synthesize these findings and account for the correlation between sensitivity and specificity, a
bivariate random-effects meta-analysis was performed. The resulting SROC curve is presented in Figure 5.
The summary operating point for the AI-ECG models yielded a pooled sensitivity of 0.82 (95% CI:
0.70-0.90) and a pooled specificity of 0.83 (95% CI: 0.74-0.89). The 95% confidence region around this
summary point indicates the precision of the mean estimate, while the much wider 95% prediction region
illustrates the substantial heterogeneity between studies and the likely range of performance for a future
study.

Investigation of heterogeneity

To investigate the cause of this heterogeneity, we conducted pre-specified subgroup analyses (Figures 6
and 7). We examined study-level specificity estimates according to Al model type (classical ML vs. DL).
While individual studies showed variation in specificity, statistical comparison did not show a significant
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Figure 5. Summary receiver operating characteristic (SROC) curve for AI-ECG diagnostic accuracy. SROC curve
illustrating the diagnostic performance of the included studies. Each black dot represents an individual study plotted according to
its sensitivity and false positive rate (1-Specificity). The solid curve denotes the fitted SROC curve summarizing overall
diagnostic accuracy. The black triangle indicates the pooled summary estimate of sensitivity and specificity, while the
surrounding ellipse represents the 95% confidence region around this summary point. ECG: electrocardiogram; Al: artificial
intelligence.

difference between model types (p = 0.60). High heterogeneity persisted in both groups. Likewise,
subgrouping by clinical endpoint—diastolic dysfunction, HFpEF, or increased filling pressure—did not
reveal significant between-group differences in specificity (p = 0.52). Importantly, heterogeneity remained
very high across all subgroup comparisons (I* > 77%), indicating that neither model type nor target
condition accounted for the variability. Subgroup analyses for sensitivity yielded similar findings.

Discussion

In this systematic review and meta-analysis, we evaluated the diagnostic accuracy of nine different AI-ECG
approaches for detecting cardiac dysfunction. Overall, the pooled results indicate a strong specificity (0.83)
and a moderately high sensitivity (0.82). This pattern suggests that AI-ECG holds a considerable role as a
non-invasive tool for ruling out cardiac dysfunction, which could help streamline diagnostic pathways and
save echocardiography for patients who are most likely to benefit.

Yet, this encouraging finding is offset by the extremely high degree of heterogeneity we observed
across studies. Our subgroup analyses, by model type (DL vs. conventional ML) and by clinical endpoint
(HFpEF, LVDD, or raised filling pressures), could not explain this variability. The absence of a clear driver
shows that model performance cannot be reduced to architecture or target condition alone; rather, it is
shaped by a complex interplay of methodological and clinical factors.

Our assessment using QUADAS-2 sheds some light on some of these influences. The most common
source of bias was patient selection. Several studies relied on retrospective or case-control designs, which
may artificially inflate diagnostic accuracy due to spectrum bias and limited representation of real-world
populations. In such settings, Al models are often trained and tested on highly selected cohorts with clear
disease definitions, potentially overestimating performance when applied to broader clinical populations.
In addition, trade-offs that are made during model development, such as prioritizing sensitivity over
specificity, also contribute to these diverse results. For example, the model by Unterhuber et al. [24] was
tuned to maximize sensitivity (0.99), but this came at the expense of specificity (0.60), making it most
suitable as a rule-out test. In contrast, the algorithm from Kuznetsova et al. [20] achieved near-perfect
specificity (0.98), better suited as a confirmatory tool. The extremely high heterogeneity observed across
studies likely reflects multiple interacting factors beyond model architecture or diagnostic endpoint. These
include variability in ECG acquisition (single-lead vs. 12-lead), signal preprocessing techniques, Al training
strategies, disease prevalence, threshold selection, and reference standard definitions. Additionally,
differences in population characteristics such as age distribution, comorbidity burden, and clinical setting
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Figure 6. Study-level specificity estimates by Al model type. The figure shows individual study estimates for classical
machine learning and deep learning models. Subgroup comparison was performed statistically and did not show a significant
difference (p = 0.60). Heterogeneity remains high within both subgroups. Al: artificial intelligence.

may further contribute to variability. Such methodological and clinical diversity limits the interpretability
of pooled estimates.

Clinical implications

Based on the available evidence, Al-enhanced ECG models appear most suitable as screening or triage tools
rather than standalone diagnostic tests. Their high specificity and negative predictive value suggest
potential utility in ruling out cardiac dysfunction in low- to intermediate-risk populations, thereby
optimizing referral for echocardiography and improving resource allocation within clinical workflows.

Strengths and limitations

This meta-analysis has several strengths: a comprehensive synthesis of an emerging literature, a formal
evaluation of study quality using QUADAS-2, and the application of a robust bivariate meta-analytic model.
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A Sensitivity by Endpoint
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Figure 7. Subgroup analysis of specificity by clinical endpoint. The analysis revealed no statistically significant difference in
specificity between studies targeting diastolic dysfunction, HFpEF, or increased filling pressure (p = 0.52). Substantial
heterogeneity persists within each clinical category. HFpEF: heart failure with preserved ejection fraction.

Importantly, our exploration of heterogeneity, though inconclusive, highlights the methodological
complexity underpinning this research field.

However, the findings must be interpreted with caution. The unexplained heterogeneity weakens the
precision of the pooled estimates, which may represent little more than an average across very different
contexts. The limited number of studies also reduced the power of subgroup comparisons. Also, the
included studies were largely retrospective, and our dataset was based on a defined pool of studies rather
than an exhaustive search, further limiting generalizability.

Conclusion

Al-enhanced ECG systems show high pooled specificity for detecting cardiac dysfunction and thus represent
a promising, cost-effective, and accessible screening option. However, the field is marked by profound
heterogeneity that cannot be explained by endpoint choice or model type alone, and model performance is
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clearly context-dependent. Large-scale, prospective studies across diverse populations, along with better
methodological standardization, are important for developing robust, generalizable AI-ECG tools that can
be confidently integrated into clinical practice.
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