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Abstract
Background: Heart failure (HF) remains a growing global health problem, with nearly half of all cases 
attributed to HF with preserved ejection fraction (HFpEF) and its precursor, left ventricular diastolic 
dysfunction (LVDD). Although echocardiography is the diagnostic gold standard, its high cost and limited 
availability restrict its use for large-scale screening. In contrast, the electrocardiogram (ECG) is inexpensive 
and widely accessible. Recent advances in artificial intelligence (AI) have created opportunities to leverage 
ECG data for the early detection of cardiac dysfunction. The objective of this study was to systematically 
review and meta-analyze the diagnostic performance of AI-based ECG models for detecting cardiac 
dysfunction.
Methods: The QUADAS-2 tool was used to assess the risk of bias. Pooled sensitivity and specificity were 
estimated using a bivariate random-effects model, with heterogeneity quantified using the I2 statistic. Pre-
specified subgroup analyses were conducted according to clinical endpoint and AI model type.
Results: Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 
guidelines, nine eligible studies evaluating AI algorithms applied to ECG data for the detection of HFpEF 
were identified. Considerable methodological and population heterogeneity was observed across studies. 
Risk of bias was generally low for reference standards, although concerns were noted in patient selection. 
The pooled specificity of AI-ECG models was high at 0.83 [95% confidence interval (CI): 0.74–0.89], while 
pooled sensitivity was 0.82 (95% CI: 0.70–0.90). Both estimates demonstrated extremely high 
heterogeneity (I2 > 96%). Subgroup analyses by endpoint and model type did not explain this variability.
Discussion: AI-enhanced ECG models show good diagnostic accuracy, specifically in ruling out cardiac 
dysfunction due to their high specificity. However, the high and unexplained heterogeneity across these 
studies limits the immediate generalizability of the results. Large, prospective validation studies across 
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diverse populations are essential before these models can be confidently adopted into routine clinical 
practice.
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heart failure with preserved ejection fraction, artificial intelligence, echocardiogram

Introduction
Heart failure (HF) is a life-threatening syndrome with rising global prevalence and is associated with 
significant morbidity, mortality, and healthcare expenditure [1–3]. Globally, HF affects an estimated 64 
million individuals. Nearly half of all HF cases are now attributed to HF with preserved ejection fraction 
(HFpEF) [4, 5]. Moreover, with the aging of the population, the prevalence of HFpEF is expected to increase 
in the coming years, reflecting both increased life expectancy and the expanding proportion of older 
individuals in the general population [5]. The pathophysiological hallmark of HFpEF is left ventricular 
diastolic dysfunction (LVDD), which often develops gradually and may remain clinically silent until 
progression to overt HF [6]. Therefore, early diagnosis of HFpEF can play a key role in facilitating prompt 
initiation of drugs that reduce the burden of HF in this population [7, 8].

Currently, echocardiography serves as the gold standard for diagnosing LVDD and HFpEF, offering 
detailed structural and functional insights [9, 10]. However, it relies on costly equipment and specialized 
expertise, making it unsuitable for large-scale screening. Invasive methods, such as right heart 
catheterization, provide definitive confirmation of elevated filling pressures but are restricted to selected 
cases given their risks and costs [11]. These limitations contribute to delays in diagnosis, reducing 
opportunities for timely intervention.

The electrocardiogram (ECG), in contrast, is inexpensive, widely available, and noninvasive. While 
subtle electrical changes in HFpEF and LVDD may appear on ECGs, they often go unnoticed by conventional 
human interpretation. In the recent past, with the development and widespread application of artificial 
intelligence (AI) in medicine, we have entered a novel era of diagnosis of disease and management. The 
efficient processing ability of AI achieves specific goals and helps clinicians a lot in clinical decision-making. 
AI mainly includes machine learning (ML) and deep learning (DL), and DL consists of multiple processing 
layers and is capable of processing more complex data [12]. The application of AI has contributed to clinical 
practice in terms of aiding diagnosis [13] and early detection [14].

One area of interest that is relevant to our topic is the combination of AI with ECG for the detection of 
HF, which may overcome some difficulties in clinical diagnosis [15]. Several studies have specifically 
investigated their role in detecting HFpEF, LVDD, or raised filling pressures. However, these studies vary a 
lot in their design, target populations, and diagnostic endpoints. To synthesize this heterogeneous evidence, 
we performed a systematic review and meta-analysis to estimate the pooled diagnostic performance of AI-
based ECG models for the detection of HFpEF, LVDD, and related cardiac dysfunction. HFpEF, LVDD, and 
elevated left ventricular filling pressures were considered related clinical manifestations along the same 
disease continuum. HFpEF represents the clinical syndrome, while LVDD and elevated filling pressures 
reflect earlier or mechanistic stages detectable by imaging or invasive assessment.

Materials and methods
Protocol and reporting

This systematic review and meta-analysis followed the Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses (PRISMA) guidelines [16].

Eligibility criteria and information sources

We included studies that (1) applied an AI or ML algorithm; (2) used ECG data (single-lead or 12-lead) as 
the input; (3) focused on detecting or predicting cardiac dysfunction related to impaired diastolic function, 
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including HFpEF, LVDD, or objectively confirmed elevated filling pressures; and (4) reported sufficient data 
to construct a 2 × 2 contingency table. We found a total of nine studies that were available for inclusion in 
this analysis.

Study selection and search strategy

PubMed, Cochrane, CTG, and Google Scholar databases were systematically searched to identify original 
literature that evaluated the diagnostic accuracy of AI algorithms using ECG data for people with HFpEF. 
The full search strategies for all databases are provided in Supplementary materials.

Two review authors independently performed the literature search and title/abstract screening 
against predefined criteria, with full texts reviewed for eligibility, and the articles were excluded that were 
not associated with the research topic. Nine studies met the inclusion criteria and were incorporated into 
both qualitative and quantitative synthesis. Results of the literature search are shown in Figure 1.

Figure 1. Flow diagram of the study selection process. Adapted from [16]. © Author(s) (or their employer(s)) 2019. CC BY. 
PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses.

Data extraction

For each study, we extracted the first author, publication year, study design, population characteristics, 
AI/ML model type, diagnostic endpoint, and reported performance metrics. For the meta-analysis, we 
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obtained or derived true positives, false positives, true negatives, and false negatives from data reported in 
the original publications, including confusion matrices, diagnostic accuracy tables, or reported sensitivity, 
specificity, and sample size. No AI models were trained or revalidated by the authors; all analyses were 
based exclusively on published study results.

Risk of bias assessment

Quality of studies was independently assessed using the QUADAS-2 tool [17], which evaluates four 
domains: Patient Selection, Index Test, Reference Standard, and Flow/Timing. Each was classified as low, 
high, or some risk of bias. Two reviewers independently performed the data extraction and quality 
assessment. Disagreements were resolved through discussion and independent assessment by another 
researcher to reach a consensus. A total of two disagreements (out of 2 assessments) were identified, all of 
which were resolved through consensus discussion.

Statistical analysis

Our primary outcomes were the pooled sensitivity and specificity of AI-ECG models. Sensitivity was 
calculated as TP/(TP + FN), representing the proportion of true disease cases correctly identified. 
Specificity was calculated as TN/(TN + FP), representing the proportion of non-diseased cases correctly 
classified. We used bivariate random-effects for meta-analysis, allowing joint estimation of sensitivity and 
specificity while accounting for their correlation. This approach produced a summary operating point and a 
hierarchical summary receiver operating characteristic (SROC) curve with 95% confidence intervals (CIs) 
and prediction intervals.

Heterogeneity was quantified using the I2 statistic, with values above 75% considered substantial. To 
explore potential sources of heterogeneity, we conducted subgroup analyses by (1) clinical endpoint 
(HFpEF, LVDD, or increased filling pressure) and (2) AI model type (DL vs. classical ML). All analyses were 
performed in R.

HFpEF, LVDD, and elevated filling pressures were analyzed together as diagnostic endpoints reflecting 
diastolic dysfunction, given their shared pathophysiological basis and overlapping diagnostic criteria.

Results
Study selection and characteristics

The study selection process is depicted in the PRISMA flow diagram (Figure 1). Nine studies were 
ultimately included. They varied a lot in their designs, study populations, and methodological approaches 
(Table 1). A wide range of AI models were evaluated, including DL architectures such as convolutional 
neural networks (CNNs) and classical algorithms like Random Forest and XGBoost. ECG inputs ranged from 
standard 12-lead recordings to new single-lead data from smartphones and wearable patches. Clinical 
endpoints included the spectrum of cardiac dysfunction, including HFpEF, LVDD, and invasively confirmed 
elevated filling pressures.

Table 1. Summary of included studies.

Author Year TP FN FP TN AI/ML model 
type

ECG type Primary endpoint

Kwon et al. [18] 2021 1,320 388 1,844 8,403 Deep learning 12-lead, 6-lead, 
single-lead

HFpEF

Sengupta et al. 
[19]

2018 107 26 9 46 Classical ML 12-lead signal-
processed

Abnormal myocardial 
relaxation

Kuznetsova et al. 
[20]

2022 30 1 5 214 Classical ML Single-lead 
(smartphone)

LVDD

Kagiyama et al. 
[21]

2020 51 25 62 250 Classical ML 12-lead signal-
processed

LVDD/Abnormal 
relaxation

Lee et al. [22] 2024 18,205 3,678 13,136 63,744 Deep learning 12-lead Increased filling pressure
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Table 1. Summary of included studies. (continued)

Author Year TP FN FP TN AI/ML model 
type

ECG type Primary endpoint

Sabovčik et al. 
[23]

2021 171 81 144 1,011 Classical ML 12-lead LVDD

Unterhuber et al. 
[24]

2021 93 1 44 65 Deep learning 12-lead HFpEF

Schlesinger et al. 
[25]

2025 836 393 848 2,543 Deep learning Single-lead (wearable) Elevated mPCWP

Gao et al. [26] 2025 43 17 16 41 Deep learning 12-lead HFpEF risk (elevated 
LVEDP)

ECG: electrocardiogram; HFpEF: heart failure with preserved ejection fraction; LVDD: left ventricular diastolic dysfunction; ML: 
machine learning; AI: artificial intelligence.

Risk of bias assessment

The QUADAS-2 evaluation is summarized in Figure 2. All nine included studies were judged to have a low 
risk of bias in the reference standard domain, as each employed appropriate diagnostic comparators such as 
guideline-based echocardiography or invasive hemodynamic assessment. In contrast, patient selection was 
the most frequent source of concern. Several studies relied on retrospective designs, thus limiting the 
representativeness of their findings. Additional concerns were noted in the flow and timing domain when 
subsets of participants were excluded from final analyses, as a result, introducing selection bias.

Figure 2. Risk of bias summary based on the QUADAS-2 assessment. Each row represents an included study, and 
columns represent the four domains of the QUADAS-2 tool (D1: patient selection, D2: index test, D3: reference standard, D4: 
flow & timing). Green indicates a low risk of bias, while yellow indicates some concerns.

Diagnostic accuracy

Forest plots of individual study estimates for sensitivity and specificity are shown in Figures 3 and 4. 
Reported sensitivities varied widely, ranging from 0.67 to 0.99 while specificities ranged from 0.60 to 0.98.
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Figure 3. Forest plot of sensitivity for the detection of cardiac dysfunction. Each square represents the point estimate of 
sensitivity for an individual study, with the horizontal lines indicating the 95% confidence interval. A pooled estimate from the 
bivariate random-effects model is shown at the bottom.

Figure 4. Forest plot of specificity for the detection of cardiac dysfunction. Each square represents the point estimate of 
specificity, proportional to its weight in the analysis. The horizontal lines indicate the 95% confidence interval. The diamond 
represents the pooled specificity of 0.83 [0.74, 0.89] from the random-effects model, with significant heterogeneity (I2 = 96.5%).

The bivariate random-effects meta-analysis produced a pooled sensitivity of 0.82 (95% CI: 0.70–0.90) 
and a pooled specificity of 0.83 (95% CI: 0.74–0.89). Both outcomes demonstrated extremely high and 
statistically significant heterogeneity (I2 > 96%, p < 0.0001).

To synthesize these findings and account for the correlation between sensitivity and specificity, a 
bivariate random-effects meta-analysis was performed. The resulting SROC curve is presented in Figure 5. 
The summary operating point for the AI-ECG models yielded a pooled sensitivity of 0.82 (95% CI: 
0.70–0.90) and a pooled specificity of 0.83 (95% CI: 0.74–0.89). The 95% confidence region around this 
summary point indicates the precision of the mean estimate, while the much wider 95% prediction region 
illustrates the substantial heterogeneity between studies and the likely range of performance for a future 
study.

Investigation of heterogeneity

To investigate the cause of this heterogeneity, we conducted pre-specified subgroup analyses (Figures 6 
and 7). We examined study-level specificity estimates according to AI model type (classical ML vs. DL). 
While individual studies showed variation in specificity, statistical comparison did not show a significant 
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Figure 5. Summary receiver operating characteristic (SROC) curve for AI-ECG diagnostic accuracy. SROC curve 
illustrating the diagnostic performance of the included studies. Each black dot represents an individual study plotted according to 
its sensitivity and false positive rate (1−Specificity). The solid curve denotes the fitted SROC curve summarizing overall 
diagnostic accuracy. The black triangle indicates the pooled summary estimate of sensitivity and specificity, while the 
surrounding ellipse represents the 95% confidence region around this summary point. ECG: electrocardiogram; AI: artificial 
intelligence.

difference between model types (p = 0.60). High heterogeneity persisted in both groups. Likewise, 
subgrouping by clinical endpoint—diastolic dysfunction, HFpEF, or increased filling pressure—did not 
reveal significant between-group differences in specificity (p = 0.52). Importantly, heterogeneity remained 
very high across all subgroup comparisons (I2 > 77%), indicating that neither model type nor target 
condition accounted for the variability. Subgroup analyses for sensitivity yielded similar findings.

Discussion
In this systematic review and meta-analysis, we evaluated the diagnostic accuracy of nine different AI-ECG 
approaches for detecting cardiac dysfunction. Overall, the pooled results indicate a strong specificity (0.83) 
and a moderately high sensitivity (0.82). This pattern suggests that AI-ECG holds a considerable role as a 
non-invasive tool for ruling out cardiac dysfunction, which could help streamline diagnostic pathways and 
save echocardiography for patients who are most likely to benefit.

Yet, this encouraging finding is offset by the extremely high degree of heterogeneity we observed 
across studies. Our subgroup analyses, by model type (DL vs. conventional ML) and by clinical endpoint 
(HFpEF, LVDD, or raised filling pressures), could not explain this variability. The absence of a clear driver 
shows that model performance cannot be reduced to architecture or target condition alone; rather, it is 
shaped by a complex interplay of methodological and clinical factors.

Our assessment using QUADAS-2 sheds some light on some of these influences. The most common 
source of bias was patient selection. Several studies relied on retrospective or case-control designs, which 
may artificially inflate diagnostic accuracy due to spectrum bias and limited representation of real-world 
populations. In such settings, AI models are often trained and tested on highly selected cohorts with clear 
disease definitions, potentially overestimating performance when applied to broader clinical populations. 
In addition, trade-offs that are made during model development, such as prioritizing sensitivity over 
specificity, also contribute to these diverse results. For example, the model by Unterhuber et al. [24] was 
tuned to maximize sensitivity (0.99), but this came at the expense of specificity (0.60), making it most 
suitable as a rule-out test. In contrast, the algorithm from Kuznetsova et al. [20] achieved near-perfect 
specificity (0.98), better suited as a confirmatory tool. The extremely high heterogeneity observed across 
studies likely reflects multiple interacting factors beyond model architecture or diagnostic endpoint. These 
include variability in ECG acquisition (single-lead vs. 12-lead), signal preprocessing techniques, AI training 
strategies, disease prevalence, threshold selection, and reference standard definitions. Additionally, 
differences in population characteristics such as age distribution, comorbidity burden, and clinical setting 
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Figure 6. Study-level specificity estimates by AI model type. The figure shows individual study estimates for classical 
machine learning and deep learning models. Subgroup comparison was performed statistically and did not show a significant 
difference (p = 0.60). Heterogeneity remains high within both subgroups. AI: artificial intelligence.

may further contribute to variability. Such methodological and clinical diversity limits the interpretability 
of pooled estimates.

Clinical implications

Based on the available evidence, AI-enhanced ECG models appear most suitable as screening or triage tools 
rather than standalone diagnostic tests. Their high specificity and negative predictive value suggest 
potential utility in ruling out cardiac dysfunction in low- to intermediate-risk populations, thereby 
optimizing referral for echocardiography and improving resource allocation within clinical workflows.

Strengths and limitations

This meta-analysis has several strengths: a comprehensive synthesis of an emerging literature, a formal 
evaluation of study quality using QUADAS-2, and the application of a robust bivariate meta-analytic model. 



Explor Cardiol. 2026;4:101293 | https://doi.org/10.37349/ec.2026.101293 Page 9

Figure 7. Subgroup analysis of specificity by clinical endpoint. The analysis revealed no statistically significant difference in 
specificity between studies targeting diastolic dysfunction, HFpEF, or increased filling pressure (p = 0.52). Substantial 
heterogeneity persists within each clinical category. HFpEF: heart failure with preserved ejection fraction.

Importantly, our exploration of heterogeneity, though inconclusive, highlights the methodological 
complexity underpinning this research field.

However, the findings must be interpreted with caution. The unexplained heterogeneity weakens the 
precision of the pooled estimates, which may represent little more than an average across very different 
contexts. The limited number of studies also reduced the power of subgroup comparisons. Also, the 
included studies were largely retrospective, and our dataset was based on a defined pool of studies rather 
than an exhaustive search, further limiting generalizability.

Conclusion

AI-enhanced ECG systems show high pooled specificity for detecting cardiac dysfunction and thus represent 
a promising, cost-effective, and accessible screening option. However, the field is marked by profound 
heterogeneity that cannot be explained by endpoint choice or model type alone, and model performance is 
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clearly context-dependent. Large-scale, prospective studies across diverse populations, along with better 
methodological standardization, are important for developing robust, generalizable AI-ECG tools that can 
be confidently integrated into clinical practice.
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