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Abstract
Multicenter imaging studies are increasingly critical in epidemiology, yet variability across scanners, 
acquisition protocols, and reconstruction algorithms introduces systematic biases that threaten 
reproducibility and comparability of quantitative biomarkers. This paper reviews the major sources of 
heterogeneity in MRI, CT, and PET-CT data, highlighting their impact on epidemiologic inference, including 
misclassification, reduced statistical power, and compromised generalizability. We outline harmonization 
strategies spanning pre-acquisition standardization, phantom-based calibration, post-acquisition intensity 
normalization, and advanced statistical and machine learning methods such as ComBat and domain 
adaptation. Illustrative examples from MRI flow quantification and radiomic feature extraction 
demonstrate how harmonization can mitigate site effects and enable robust large-scale analyses.
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Introduction
The harmonization of data is becoming increasingly important in imaging research. In particular, imaging 
data is affected by technical variability between scanners, which complicates comparisons across imaging 
sites, different scanners, and time points [1]. This issue impacts widely used cross-sectional modalities like 
magnetic resonance imaging (MRI), diffusion tensor imaging (DTI), and computed tomography (CT), as well 
as derived measurements such as region of interest (ROI) volumes, regional analysis of volumes examined 
in normalized space maps, cortical thickness estimates, and connectome matrices. To enhance statistical 
power when aggregating data from multiple sources, post-processing harmonization techniques are 
essential for reducing unwanted variability [2].
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A single-source dataset introduces the potential for institutional biases, which may affect the 
generalizability of the model. To address the problem, large-scale, multi-center studies were utilized, but 
the integration of data from diverse sources is essential for achieving robust and generalizable findings. 
Harmonizing and disseminating data across sites enables researchers to capture variability across 
populations, imaging systems, and clinical practices, thereby strengthening the study’s validity. However, 
this process requires a well-designed infrastructure capable of acquiring, processing, and sharing data from 
multiple modalities while aligning with the workflows of all participating centers [3].

Sources of variability in quantitative imaging
The reliability of MRI-derived measurements of human cerebral cortical thickness was investigated by Han 
et al. [4], with a focus on the effects of field strength, scanner upgrades, and manufacturer differences. They 
found that the average variability was 0.15 mm for cross-scanner comparisons (Siemens/GE) and 0.17 mm 
for cross-field strength comparisons (1.5 T/3 T). Measurements across field strengths showed a slight bias, 
with cortical thickness appearing greater at 3 T [4]. In the variability assessment of volumetric data 
combined from five different scanners (2 General Electric Signa, 2 Siemens Symphony, and a Philips 
Gyroscan) at five different sites by repeating the scans of five volunteers at each of the sites using T1-only 
acquisitions, the two Siemens scanners exhibited a characteristic bias, overestimating white matter and 
underestimating gray matter compared to the other scanners. This bias, however, was not apparent when 
multimodal data were used [5]. The results indicated that the greatest compatibility between scanners is 
achieved when using equipment from the same manufacturer and maintaining image acquisition 
parameters as similar as possible.

Many factors can influence quantitative measurements during image acquisition. For example, the 
ability to select among various acquisition parameters and establish optimized protocols contributes to the 
diversification of positron emission tomography-CT (PET-CT) imaging techniques. Modern scanners 
incorporate numerous components that may affect quantitative accuracy, including 3D acquisition schemes, 
scintillators with intrinsic radioactivity, iterative reconstruction algorithms, CT-based attenuation 
correction, and scatter correction models that rely on multiple assumptions [6]. Moreover, the injected dose 
of [18F]Fluorodeoxyglucose may range from 300 to 700 megabecquerels, depending on scanner-specific 
characteristics such as the PET-CT detector material and acquisition mode [7]. These factors in acquisition 
may lead to research and clinical outcomes. To better understand and control such variability, long half-life 
PET-CT calibration phantoms are used to compare quantitative measurements across scanners, acquisition 
protocols, and processing methods by eliminating patient-related factors. Studies using such phantoms 
have demonstrated that PET-CT measurements exhibit both variance and size-dependent bias influenced 
by object dimensions, ROI definition, scan duration, acquisition mode, and reconstruction parameters, with 
appreciable biases reported even for relatively large (37 mm) objects [8, 9].

Snaith et al. [10] reported substantial variation in pelvis radiography techniques, with corresponding 
implications for clinical decision-making. Calls for standardization of pelvis radiographic studies have been 
made, and some authors have even proposed specific acquisition protocols [11]. However, there is no 
evidence that these protocols have been implemented in diagnostic imaging centers [10].

Reconstruction algorithms differ across manufacturers and software platforms. An et al. [12] compared 
two of the latest 3D modeling software packages, Syngo and Mimics, for accuracy and computational 
efficiency. Using CT scan images in DICOM (Digital Imaging and Communications in Medicine) format, they 
evaluated segmentation accuracy, anatomical measurements, cost, and computational time as benchmarks. 
The authors reported that Mimics outperformed Syngo in terms of semi-automated segmentation and 
equipment cost, whereas Syngo demonstrated superior computational efficiency [13]. Another key 
challenge in the reconstruction algorithm process is the potential for intensity bias in the slice data, often 
caused by anatomical motion relative to the imaging coils. Consequently, slices capturing the same 
anatomical region at different times may display varying sensitivity. Such bias field inconsistencies can 
introduce artifacts into the final 3D reconstruction, affecting both the clinical interpretation of critical tissue 
boundaries and the automated analysis of the data [14].
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Beyond scanners, acquisition protocols, and processing methods, variability can also arise from the 
human element. Carapella et al. [15] demonstrated that standardized training of operators performing 
manual post-processing of cardiac MRI T1 maps improved consistency in the quantification of T1 
biomarkers by reducing subjective bias. Training led to more accurate estimation of mean left ventricular 
myocardial T1 values and wall thickness, reduced variability in these measurements, and decreased 
discrepancies relative to reference standards. Moreover, patient positioning performed by technologists 
has also been shown to significantly influence both radiation dose and image quality in CT [16].

Lange et al. [17] aimed to assess the inter-study reproducibility of cardiac MRI cine image-based 
hemodynamic forces (HDF) measurements and to explore the current capabilities and limitations of this 
emerging deformation imaging technique. They concluded that inter-study variability could be improved 
through further software optimization, and emphasized the need for additional validation studies to 
support the broader clinical adoption of cardiac MRI-based HDF analysis [17]. Respectively, the study of 25 
athletes’ cardiac MRI was analyzed by two independent observers and then re-analyzed by the same 
observer one week apart using HDF parameters derived from feature-tracking cardiac MRI showed a low 
inter- and intra-observer variability [18].

Strategies for harmonization
Pre-acquisition standardization

Consistency in acquisition parameters is fundamental for reducing variability across imaging sites. 
Harmonizing protocols involves aligning scanner settings such as tube voltage, current, slice thickness, field 
of view, and reconstruction kernels in CT, as well as echo time, repetition time, flip angle, and voxel size in 
MRI [19]. By defining and adhering to consensus protocols, multicenter studies can minimize inter-scanner 
variability and ensure that images are comparable across different institutions. Whenever possible, 
published consensus recommendations (The Quantitative Imaging Biomarkers Alliance, the American 
College of Radiology, and the European Association of Nuclear Medicine guidelines) should be followed to 
improve reproducibility and facilitate cross-study integration. In PET-CT, for instance, dedicated guidelines 
have been established to ensure greater consistency in recovery coefficients and the standardized uptake 
value measurements across different scanners [20].

Phantoms provide a reliable means to calibrate and benchmark scanner performance across centers. 
Regular phantom scans allow for the assessment of image quality parameters such as noise, resolution, 
contrast, and geometric fidelity. Using standardized, commercially available phantoms ensures 
comparability and enables the detection of systematic differences between scanners. Phantom-based 
harmonization can also help establish site-specific correction factors, thereby reducing bias in quantitative 
imaging biomarkers [21].

Routine quality assurance (QA) procedures are essential to maintain scanner stability over time. QA 
programs typically include daily, weekly, and monthly checks of scanner hardware and software, 
monitoring of calibration drifts, and verification of image quality metrics. In multicenter studies, 
establishing a centralized QA framework ensures that deviations are detected early and that corrective 
actions are taken promptly. This not only supports protocol adherence but also builds confidence in the 
reliability of data across different clinical environments [22]. Vendor-provided QA monitoring is now 
standard, but early ultra-high-field MRI required adapting 3 T QA procedures to address stronger magnet-
gradient interactions. The introduction of higher-channel radiofrequency transmission and parallel 
transmission further expanded QA needs, leading to additional monitoring of phase differences, signal 
reflection, and coupling between radiofrequency elements [23].

Post-acquisition techniques

Once images have been acquired, variations in intensity distributions across scanners and protocols may 
still compromise comparability. Intensity normalization methods, including histogram matching, z-score 
normalization, and bias field correction, are used to standardize image intensities while preserving 



Explor Digit Health Technol. 2026;4:101185 | https://doi.org/10.37349/edht.2026.101185 Page 4

underlying tissue contrasts. These approaches are particularly important in MRI, where scanner-dependent 
scaling differences can significantly influence quantitative metrics and subsequent analyses [24].

Differences in voxel dimensions, orientations, and slice thicknesses across imaging sites necessitate 
resampling and reformatting procedures. Spatial harmonization ensures that images share a common 
resolution and geometry, thereby facilitating multi-site pooling and analysis. Interpolation methods must 
be applied carefully to avoid introducing artifacts or bias, especially when quantitative biomarkers depend 
on spatial fidelity. Registration to standardized anatomical templates may also be employed to align data 
across patients and centers [25].

For advanced quantitative imaging, particularly radiomics, harmonization extends to the level of 
feature extraction. Variations in segmentation protocols, image preprocessing steps, and feature calculation 
algorithms can significantly impact feature reproducibility. Adoption of standardized feature definitions, 
such as those proposed by the Image Biomarker Standardization Initiative, helps ensure consistency across 
studies [26]. Additionally, harmonization methods such as ComBat can be applied to reduce site-specific 
variability in extracted features while preserving biologically relevant signals. Radiomic features are often 
significantly influenced by CT acquisition and reconstruction parameters, which can compromise their 
reproducibility. However, selecting a smaller subset of more robust features, combined with study-specific 
correction factors, can substantially enhance clustering reproducibility, for instance, in the analysis of 
metastatic liver lesions [27].

Statistical and machine learning approaches

ComBat is a data-driven method, meaning that the transformations it uses to align data into a common 
space must be specifically estimated for each study that includes data from multiple centers or protocols. In 
a study evaluating whether a compensation method could correct radiomic feature variability arising from 
different CT protocols, the application of ComBat achieved 100% sensitivity and specificity (48 of 48 
volumes of interest) and effectively eliminated scanner and protocol effects while preserving the 
underlying differences between texture patterns [28]. However, ComBat relies on specific assumptions, and 
violations of these assumptions can lead to suboptimal or even flawed harmonization [29]. Before applying 
ComBat, it is important to ensure that the populations being harmonized are as comparable as possible in 
terms of age range, demographic characteristics, sex distribution, covariate slopes, and health status. 
Failure to account for these factors may impair harmonization during model training and can lead to 
substantial errors when the model is applied to new data [30].

Fortin et al. [2] proposed the use and adaptation of five statistical harmonization methods for DTI data: 
global scaling, functional normalization, RAVEL, Surrogate Variable Analysis, and ComBat, with 
unharmonized data referred to as “raw.” Their findings demonstrated that ComBat effectively retains 
biological variability while eliminating unwanted site-related variation, increasing the number of voxels 
demonstrating site-effect reduction from 481 to 5,658 for fractional anisotropy maps, and from 23,136 to 
32,203 for mean diffusivity maps [2].

Phantom-based calibration is used to determine scanner-specific acquisition and reconstruction 
protocols. The close agreement in contrast recovery coefficient measurements between phantom and 
subject data in the study of Panetta et al. [21] indicates that harmonization strategies established in 
phantom studies translate effectively to patient images. However, the quantitative consistency between 
different scanners, as reflected by the root mean squared percent difference, varies depending on the 
metric used for harmonization [21].

Advancements in style transfer techniques could help address variability in scanner acquisition and 
reconstruction parameters at the image level. Style transfer is a computer vision method that takes two 
images, one representing the content and the other providing the reference style, and blends them to create 
an output that retains the core features of the content image while adopting the artistic style of the 
reference. In cases where a radiomics model is unavailable for a new scanner or protocol, style transfer 
could be used to transform images from the new machine, making them appear as if they were captured by 
an existing scanner [25].
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Illustrative example from echocardiography and MRI

Salustri et al. [31] demonstrated that HDF parameters could serve as a step toward standardization across 
clinical studies and are currently applicable to routinely acquired echocardiographic or cardiac MRI, 
regardless of equipment brand. Existing evidence highlights the clinical value of HDF in the early detection 
and monitoring of cardiomyopathy and heart failure, in assessing patients with dyssynchrony, and in 
evaluating the athlete’s heart. Moreover, the authors note that the area under the curve (AUC) can be 
derived from either the HDF or hemodynamic power (HDP) curves. When computed from the HDF curve, 
the AUC reflects an impulse, representing a change in momentum, and when normalized by the time 
interval, it yields the normalized AUC (nAUC), while when calculated from the HDP curve, it corresponds to 
hemodynamic work [31].

Recommended workflow for harmonized imaging epidemiology

Data harmonization can be conducted either retrospectively or prospectively (Figure 1). In both 
approaches, the first step for researchers is to identify the variables to be harmonized. This decision should 
be guided by the overarching goal of the harmonization effort, whether it is theory-driven (aimed at testing 
specific relationships among selected variables) or data-driven (focused on exploring relationships across a 
broader set of variables). Additionally, the availability of data and the acceptable degree of harmonization 
must also be taken into account [32].

Figure 1. Comprehensive workflow for harmonizing multicenter quantitative imaging datasets. The process comprises 
three stages: (1) Preparation, in which study goals, variables, and harmonization pathways are defined; (2) Implementation, 
which includes retrospective and prospective harmonization procedures such as data standardization, intensity normalization, 
bias-field correction, spatial resampling, ComBat harmonization, protocol coordination, phantom scanning, and QA monitoring; 
and (3) Post-Harmonization, which focuses on data validation, assessment of preserved biological signal, and documentation of 
the harmonization process. This framework provides actionable methodological steps to support reproducible multicenter 
imaging research. QA: quality assurance; DICOM: Digital Imaging and Communications in Medicine; PET-CT: positron emission 
tomography-computed tomography.

Discussion
Although standardization efforts have been in place for a long time and may need to be further 
strengthened and expanded to better include radiomics, their ability to reduce variations in radiomic 
feature distributions across sites is still limited [33], and the preservation of fine anatomical detail and 
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clinically relevant predictive information is essential in medical imaging, and the downstream impacts of 
harmonization must be evaluated with caution [34]. The main reason is the continuing diversity of scanner 
models, proprietary reconstruction algorithms, and post-processing tools used in different clinical centers 
[33]. In particular, several key challenges were identified in developing deep learning models using multi-
site structural brain MRI datasets. These challenges can be grouped into four main categories: (1) difficulty 
in locating relevant literature, (2) limited access to suitable datasets, (3) a widespread lack of annotation in 
large datasets, and (4) the need to navigate the trade-off between data harmonization and domain 
adaptation strategies [35].

Conclusion
The harmonization of multicenter imaging data is indispensable for advancing epidemiologic research. 
Technical heterogeneity introduced by scanner manufacturers, acquisition protocols, reconstruction 
algorithms, and operator-dependent factors significantly compromises the reproducibility and 
generalizability of imaging biomarkers. By systematically addressing these challenges through pre-
acquisition standardization, phantom-based calibration, post-acquisition normalization, and statistical or 
machine learning methods, researchers can substantially reduce site-related variability while preserving 
biologically meaningful signals. The integration of harmonization workflows into study design not only 
strengthens causal inference and statistical power but also facilitates collaboration across institutions and 
populations.

Looking ahead, future directions should emphasize the development of international standards, the 
incorporation of radiomics and deep learning into harmonization pipelines, and the adoption of federated 
learning frameworks that allow data sharing without compromising privacy. These efforts will expand the 
reach of imaging epidemiology, enabling robust and reproducible insights into population health.
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