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Abstract
Background: The root cause of diabetes is dysregulated pathways, including those involving AMP-
activated protein kinase (AMPK), GLUT-mediated glucose transport, and the PI3K/AKT pathway. There has 
been a notable increase in research on phytoconstituents as pathway-specific treatments for diabetes; 
however, the comprehensiveness of this evidence remains unclear.
Methods: This systematic review followed PRISMA guidelines and was registered on PROSPERO 
(CRD420251073083). Databases searched included PubMed, Scopus, Google Scholar, and Europe PMC for 
experimental studies (in vivo, in vitro, and in silico) published between 2015 and 2024. The final search 
was conducted in April 2025, and 2025 publications available as “early access” before this date were 
included. Only English-language studies were included. Animal studies (in vivo) were assessed for risk of 
bias using the SYRCLE tool, while in vitro studies were evaluated using the ToxRTool, based on test 
substance characterization, test system description, study design, and data reporting. Narrative synthesis 
was employed due to the heterogeneity of the data.
Results: Out of 3,222 articles, 177 articles met the inclusion criteria. Study types included in vitro (92; 
52%), in vivo (66; 37.3%), in silico (15; 8.5%), and other experimental types (4; 2.3%). Phytoconstituents 
predominantly targeted PI3K/AKT (44.6%), GLUT transporters (19.8%), and AMPK (14.1%) pathways. 
Rodent models were most used (48.02%). Primary outcomes included improved insulin sensitivity, 
enhanced glucose homeostasis, and reduced oxidative stress and inflammation. The risk of bias analysis 
revealed 68.93% of the studies carried a moderate risk, 29.94% a low risk, and 1.13% a high risk.
Discussion: Phytoconstituent activity was consistent with the activation of diabetes-relevant signaling 
pathways, particularly PI3K/AKT, GLUT transporters, and AMPK cascades. However, most evidence was 
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correlative, with limited loss-of-function validation. Methodological irregularities, moderate risk of bias, 
and limited translational research reduce the strength and generalizability of these findings.
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Introduction
Diabetes is a chronic disease characterized by elevated blood sugar levels [1]. The normal fasting blood 
sugar range is 72–108 mg/dL; 100–125 mg/dL is considered prediabetes, and a level above 126 mg/dL is 
classified as diabetes [2]. There exist two types of diabetes: type 1 and type 2. In type 1 diabetes, pancreatic 
β-cells are destroyed by CD4+ and CD8+ T cells and macrophages, leading to insulin deficiency. Islet cell 
antibodies are found in nearly 85% of patients, and most target glutamic acid decarboxylase (GAD) within 
β-cells of the pancreas. Insulin refers to a hormone produced by beta islet cells of Langerhans in the 
pancreas. It plays a significant role in regulating blood sugar levels by converting excess blood sugar into 
glycogen and enhancing glucose metabolism [3]. Type 2 diabetes is a chronic condition characterized by 
high blood sugar levels, also referred to as hyperglycemia [4]. It is associated with decreased physical 
activity and exercise, as well as increased sedentary habits, which are linked to elevated markers of chronic 
systemic inflammation [4]. Proinflammatory molecules, such as interleukin-6 (IL-6), C-reactive protein 
(CRP), tumor necrosis factor-alpha (TNF-α), and IL-1, are released into the bloodstream and within specific 
organs in this scenario, causing metabolic inflammation [5]. The most common cause of morbidity and 
death for individuals with type 1 and type 2 diabetes is vascular complications, which are caused by 
vascular abnormalities brought on by a persistently high blood sugar level that raises oxidative stress and 
inflammatory reactions [5].

The most common type of diabetes is type 2 diabetes, with adults being the most affected. In the past 
thirty years, there has been a considerably high prevalence of type 2 diabetes in countries of all income 
levels in the world [6]. From 200 million people in 1990 to 830 million people worldwide have diabetes, 
with the majority living in low and medium-income countries, and about half of them living without any 
medication, with diabetes coverage being very low in these countries [7]. Given that these individuals do 
not take medication, they are very much susceptible to diseases such as blindness, kidney failure, heart 
attacks, strokes, and lower limb amputations. This situation resulted in millions of deaths in the year 2022, 
in addition to 11% of cardiovascular deaths caused by high blood sugar levels [6]. In the year 2019, there 
were over 463 million diabetic patients globally, with about 4.2 million diabetes-related deaths recorded 
[8]. About 537 million adults aged between 20 and 79 years worldwide suffer from diabetes. By the year 
2030, it is estimated that over 643 million individuals, and by 2045, over 783 million individuals within this 
range are projected to be living with diabetes. In brief, while the world’s population is projected to grow by 
20% from 2021 to 2045, the number of diabetic patients is expected to rise by 46% [9].

This study systematically analyzes how phytoconstituents target specific molecular pathways in 
experimental diabetes models to inform therapeutic management strategies, and explores current trends 
and emerging perspectives for their clinical translation. In line with this, the primary aim is to 
systematically analyze and synthesize evidence on how phytoconstituents target specific molecular 
pathways in experimental diabetes models, evaluate their potential for informing targeted therapeutic 
management strategies, and identify current trends and future perspectives for clinical translation through 
qualitative synthesis of in vivo, in vitro, and in silico studies published between 2015 and 2024, including 
2025 studies available as “early access” before the final search date in April 2025.

To achieve this aim, the study sets out several specific objectives. First, it seeks to identify and 
categorize the molecular pathways [including AMP-activated protein kinase (AMPK) activation, glucose 
transporter 4 (GLUT4) translocation, phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) signaling, 
and enzymatic inhibition] targeted by phytoconstituents in experimental diabetes models. Following this, it 
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will analyze the therapeutic mechanisms through which phytoconstituents modulate glucose metabolism 
and insulin signaling pathways across different experimental approaches. Additionally, it will assess the 
translational potential of phytoconstituent-based interventions, moving from experimental models to 
clinical therapeutic management strategies. Along with highlighting information gaps that guide future 
research directions, the study also aims to identify current trends in phytoconstituent-diabetes research. 
Ultimately, it will assess the potential for clinical translation and provide evidence-based recommendations 
for translating phytoconstituent treatments from the laboratory to the patient’s bedside.

Nutraceuticals and phytomedicines offer a low incidence of adverse effects that can be a fantastic 
alternative to regular drugs in combating diabetes and its related complications. Diabetes mellitus is a 
metabolic disorder characterized by abnormal glucose metabolism, accompanied by distinct long-term 
complications. The complications that are specific to diabetes include retinopathy, nephropathy, and 
neuropathy. Patients with all forms of diabetes of sufficient duration, including insulin-dependent diabetes 
mellitus (IDDM) and non-IDDM (NIDDM), are vulnerable to these complications, which cause severe 
morbidity. Retinopathy occurs in all forms of diabetes. Several high-quality studies, including the 
population-based Wisconsin Epidemiologic Study of Diabetic Retinopathy, have defined the natural history 
of retinopathy in IDDM and NIDDM using stereoscopic fundus photography. Nephropathy is the diabetes-
specific complication associated with the most significant mortality. Diabetes remains a major risk factor 
for coronary artery disease. Dupuytren’s contractures and periarticular thickening of the skin leading to 
decreased mobility of the fingers are also more common in patients with diabetes [10].

Diabetes, if diagnosed at its early stage, can empower individuals and healthcare providers to initiate 
timely interventions, which would help prevent complications and improve the overall quality of life. 
Timely interventions, regular screening, and symptom awareness collectively can lead to better 
management and an enhanced quality of life [11]. Studies have shown that patients with diabetes tend to 
have higher all-cause mortality and morbidity due to cardiovascular disease, cancer, chronic lower 
respiratory diseases, cerebrovascular disease, influenza and pneumonia, and kidney disease [12].

This review’s strengths include its multi-database strategy (PubMed, Scopus, Google Scholar, and 
Europe PMC) and its focus on temporal publication trends (2015–2025).

Materials and methods
Identification phase

A systematic search was carried out across four databases (PubMed, Scopus, Google Scholar, and Europe 
PMC) using these six keyword combinations:

Phytoconstituents AND Diabetes Mellitus AND Molecular Mechanisms1.

Plant-derived Compounds AND Antidiabetic Activity AND Signal Transduction2.

Herbal Medicine AND Diabetes Management AND Cellular Pathways3.

Natural Products AND Insulin Resistance AND Gene Expression4.

Botanical Extracts AND Glucose Metabolism AND Therapeutic Targets5.

Phytochemicals AND Diabetes Therapy AND Inflammatory Pathways6.

The search results are broken down as follows: PubMed (893 identified, 871 after duplicates removal), 
Scopus (329 identified, 325 after duplicates removal), Google Scholar (1,000 identified, 798 after duplicates 
removal), and Europe PMC (1,000 identified, 821 after duplicates removal). The overall workflow [13] of 
study identification, screening, eligibility, and inclusion is summarized in Figure 1. All studies summarized 
in Table S1 are collectively cited here for numerical continuity [14–190].
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Figure 1. PRISMA flow diagram showing the selection of studies. Adapted from [13]. © 2019 The Authors. Licensed under 
a CC BY 4.0.

Screening phase
Inclusion criteria

The inclusion criteria for this review were original experimental research publications published between 
2015 and 2025 that addressed molecular pathways associated with diabetes, including glycemic control 
pathways (AMPK activation, GLUT4 translocation, PI3K/AKT signaling, and inhibition of α-amylase or α-
glucosidase). Models of insulin resistance, hyperglycemia, or diabetes mellitus, whether in vitro, in vivo, or 
in silico, were included. Studies examining phytoconstituents (bioactive compounds derived from plants) or 
herbal extracts with potential antidiabetic benefits were considered. Articles published in English that are 
entirely accessible.

Exclusion criteria

The exclusion criteria for this review included reviews, meta-analyses, editorials, commentaries, and 
conference abstracts. Articles that were not written in English, those published before 2015, and those 
without full-text accessibility were also excluded. Studies that did not address diabetes mellitus, 
hyperglycemia, or insulin resistance, or did not contain phytoconstituents or bioactive compounds derived 
from plants, were excluded. Duplicate or retracted publications, as well as those that did not investigate 
particular molecular processes like PI3K/AKT, AMPK, GLUT4, or enzymatic inhibitory pathways, were also 
excluded.

Eligibility phase

Studies that used experimental models explicitly created to research diabetes were included in this review. 
In vivo models that met the criteria were genetically diabetic db/db mice, mice induced by a high-fat diet 
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(HFD), and rats induced by streptozotocin (STZ). For in vitro research, only papers that modeled diabetes 
circumstances utilizing insulin-resistant adipocytes, hepatic cells, or pancreatic β-cells were included. In 
silico research was considered if it targeted diabetes-related proteins, such as protein tyrosine phosphatase 
1B (PTP1B) or peroxisome proliferator-activated receptor gamma (PPARγ), using molecular docking or 
simulations. Only English-language research papers published after 2015 were considered for this analysis. 
Articles were excluded due to the following factors: those published before 2015, inaccessible because of 
paywalls or lack of author response, involving non-diabetic models or unrelated conditions, or review 
articles or editorials. All retrieved full-text articles were independently screened by two reviewers, and any 
disagreements were resolved through discussion to ensure uniform application of the eligibility 
requirements.

Data extraction variables

Data extraction was guided by predefined variables, including plant source, study type, diabetes model, 
molecular target, and key outcomes (Table 1). Across the 177 included studies, 92 (52%) were in vitro, 66 
(37.3%) in vivo, 15 (8.5%) in silico, and 4 (2.3%) others [hybrid: human trial, DIA proteomics, high-content 
screening (HCS)]. The majority of the investigated phytoconstituents were derived from medicinal plants 
traditionally associated with antidiabetic activity, notably polyphenols, alkaloids, and flavonoids, which 
together accounted for over half of all reported compounds. This distribution indicates a prevailing 
emphasis on in vivo validation and molecular mechanisms involving antioxidant and insulin-sensitizing 
pathways.

Table 1. We extracted biomarker data associated with each pathway to contextualize mechanistic evidence (e.g., IRS-1, 
GLUT4 for PI3K/AKT; ACC phosphorylation for AMPK).

Variable Description Source example (Entry #)

Plant/Phytoconstituent Ficus deltoidea, Curcumin #1, #101
Study type In vitro, in vivo, in silico, or combined #6 (in vitro), #54 (in vivo)
Diabetes model STZ rats, HFD mice, computational targets #1 (STZ-NA rats), #2 (HFD)
Molecular target PI3K/AKT, PTP1B, PPARγ, α-glucosidase #12 (IRS-1/AKT), #102 (α-amylase)
Key outcomes ↓ Glucose, ↑ insulin sensitivity, and ↓ inflammation #3 (↓ glucose), #46 (↑ insulin sensitivity)
ACC: acetyl-CoA carboxylase; AMPK: AMP-activated protein kinase; GLUT4: glucose transporter 4; HFD: high-fat diet; IRS-1: 
insulin receptor substrate 1; PI3K/AKT: phosphoinositide 3-kinase/protein kinase B; PPARγ: peroxisome proliferator-activated 
receptor gamma; PTP1B: protein tyrosine phosphatase 1B; STZ: streptozotocin.

A thematic synthesis approach was used to categorize extracted data by pathway and model type, as 
shown in Table 1. Data synthesis was conducted qualitatively using a thematic framework approach. The 
extracted data were first coded into key themes, including pathway targeted, study model, biomarker 
outcomes, and therapeutic effects. These themes were then compared across studies to identify recurring 
mechanistic patterns, convergence of therapeutic outcomes, and cross-validation between in vitro, in vivo, 
and in silico designs. This process enabled an integrative narrative synthesis, which was chosen over meta-
analysis due to the methodological and outcome heterogeneity across included studies.

Inclusion phase

A total of 177 studies were incorporated into the qualitative synthesis.

SYRCLE’s risk of bias (ROB) tool for in vivo investigations is used for quality assessment of in vivo 
investigations. In vitro investigations were assessed using the ToxRTool, which evaluates study quality 
based on test substance characterization, test system description, study design, and data reporting.

The combined results were arranged according to the molecular pathway (e.g., PI3K/AKT: 44.6%, 
GLUTs: 19.8%, AMPK: 14.1%, others: 21.5%).
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Study selection and data extraction process

Four reviewers participated in this systematic review, each with a clearly defined role throughout the 
process. The study selection process was conducted collaboratively by two reviewers (Reviewers A and B) 
who jointly performed the systematic search across all four databases (each person working on two 
databases), downloaded articles, removed duplicates, and conducted title and abstract screening. All 
screening decisions during this phase were made by consensus among these two reviewers to ensure 
consistent application of inclusion and exclusion criteria. Following the completion of study selection, data 
extraction was performed independently by the remaining two reviewers (Reviewers C and D) using the 
standardized extraction form to ensure consistency in captured variables. Reviewer C extracted data from 
78 studies while Reviewer D extracted data from 99 studies, totaling the 177 included studies. Each 
reviewer was responsible for removing all relevant variables from their assigned studies, including 
plant/phytoconstituent information, study type, diabetes model used, molecular targets, and key outcomes.

Methodological rigor

To ensure methodological rigor and compliance with the PRISMA 2020 guidelines, this review was 
prospectively registered in PROSPERO (CRD420251073083) before the screening process began. The 
search strategy, inclusion and exclusion criteria, and data extraction framework were defined before 
registration, while data analysis and synthesis were conducted afterward. The studies were carefully 
examined and chosen by four reviewers. To verify the reproducibility of the screening process, a sensitivity 
check was performed by randomly selecting 20% of the full-text articles for independent screening by two 
reviewers. Inter-rater reliability was then quantified using Cohen’s kappa (κ) to measure the level of 
agreement between reviewers. Agreement was substantial across key domains, with κ = 0.81 for study type 
classification, 0.78 for molecular target identification, and 0.85 for outcome classification. Disagreements 
were resolved by consensus through discussion between the two reviewers, and a third senior reviewer 
adjudicated unresolved cases. This approach ensured consistent and reliable data capture while 
maintaining the efficiency of the collaborative process. Table S1 contains the complete search strategy for 
replication, and a tabular summary of exclusion grounds is provided for transparency. Furthermore, 85% of 
the included studies used mammalian models, enhancing the clinical relevance and translational validity of 
the findings. Consistent dosage reporting (in mg/kg) across in vivo studies enabled insightful comparisons 
across different experimental setups.

For data management and reference handling, we used Publish or Perish, Microsoft Excel, and 
EndNote. Publish or Perish was used for bibliometric retrieval and citation analysis; EndNote for structured 
referencing and citation management; and Excel for organizing extracted variables, tabulating study 
characteristics, and generating descriptive statistics.

Results
Molecular pathways and targets

The studies reviewed targeted key molecular mechanisms involved in diabetes pathogenesis collectively; 
the most molecular pathways and targets are PI3K/AKT signaling (44.6%) of the studies, GLUTs (19.8%), 
AMPK activation (14.1%), and other pathways (α-glucosidase inhibition, PPAR modulation, 
antioxidant/ROS regulation, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), 
dipeptidyl peptidase (DPP)-4 inhibition, insulin receptor modulation) were reported across 38 studies, 
which cover about 21.5% of the studies.

Table 2 presents representative biomarkers modulated within each pathway. PI3K/AKT had the 
highest count (79 studies), followed by GLUT transporters (35 studies) and AMPK (25 studies). Biomarker-
level findings highlight mechanistic plausibility, including insulin receptor substrate 1 (IRS-1) and GLUT4 
for PI3K/AKT, acetyl-CoA carboxylase/PPARγ coactivator 1-alpha (ACC/PGC-1α) for AMPK, and 
GLUT2/GLUT4/SGLT2 for GLUT transporters.
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Table 2. Molecular pathways and representative biomarkers.

Molecular pathway Key biomarkers/targets (examples) Study count (n)

PI3K/AKT IRS-1, AKT, p-AKT, GSK3β, IGF-1, GLUT4 79
GLUT transporters GLUT2, GLUT4, SGLT2 35
AMPK ACC, SIRT1, PGC-1α, CPT1, LKB1 25
Other pathways PPARγ, adiponectin, FABP4, NF-κB, TNF-α, IL-6, NLRP3, STAT3, MAPK, ER stress, 

oxidative stress markers, apoptosis
38

ACC: acetyl-CoA carboxylase; AMPK: AMP-activated protein kinase; CPT1: carnitine palmitoyltransferase 1; ER: endoplasmic 
reticulum; FABP4: fatty acid-binding protein 4; GLUT: glucose transporter; GSK3β: glycogen synthase kinase 3 beta; IGF-1: 
insulin-like growth factor-1; IL-6: interleukin-6; IRS-1: insulin receptor substrate 1; LKB1: liver kinase B1; MAPK: mitogen-
activated protein kinase; NF-κB: nuclear factor kappa-light-chain-enhancer of activated B cells; PGC-1α: peroxisome 
proliferator-activated receptor gamma coactivator 1-alpha; PI3K/AKT: phosphoinositide 3-kinase/protein kinase B; PPARγ: 
peroxisome proliferator-activated receptor gamma; SGLT2: sodium-glucose cotransporter 2; SIRT1: sirtuin 1; STAT3: signal 
transducer and activator of transcription 3; TNF-α: tumor necrosis factor-alpha.

The summarized molecular targets and biomarkers (Table 2) highlight the predominance of PI3K/AKT, 
GLUT, and AMPK signaling in phytoconstituent research on diabetes. These pathways (AMPK, PI3K/AKT, 
and GLUT) were prioritized because they represent critical molecular nodes in glucose homeostasis and 
insulin signaling. AMPK is a master regulator of cellular energy metabolism, enhancing glucose uptake and 
fatty acid oxidation. The PI3K/AKT pathway is the canonical insulin signaling cascade, essential for GLUT4 
translocation and pancreatic β-cell survival. GLUT transporters, particularly GLUT2 and GLUT4, directly 
mediate cellular glucose uptake. Dysregulation of these three mechanisms is central to the pathophysiology 
of diabetes, making them highly relevant therapeutic targets. Their combined modulation offers strong 
mechanistic plausibility for phytoconstituents as multi-target antidiabetic agents.

Risk of bias assessment

The overall distribution of ROB ratings (low, moderate, high) is presented in Table 3 and visualized in 
Figure 2.

Table 3. Row labels and ROB.

Row labels Count of ROB

High 1.13%
Low 29.94%
Moderate 68.93%
Grand total 100.00%
ROB: risk of bias.

Figure 2. ROB chart. ROB: risk of bias.
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Figure 2 presents the distribution of ROB ratings (low, moderate, high), showing that 68.93% of the 
studies carried a moderate risk, 29.94% a low risk, and 1.13% a high risk.

Reporting transparency

The studies that met the inclusion criteria were analyzed based on available experimental and 
computational evidence, excluding meta-analytic synthesis. A formal bias risk scoring was performed for 
the qualitative synthesis; however, the quality of the study and its consistency/replicability will be 
addressed in the Discussion.

Trends in publication year

From this research, we observed a progressive increase in publications on plant-based therapies for 
diabetes over 11 years. The statistics are as follows: 2015–2019 (47 studies), 2020–2022 (53 studies), 
2023–2025 (77 studies). However, 2024 had the highest number of publications (40 studies), indicating a 
recent increase in interest in plant-based therapies for diabetes (Table 4).

Table 4. Trends in publication year.

Year Count of publications

2015 6
2016 9
2017 11
2018 13
2019 8
2020 18
2021 19
2022 16
2023 17
2024 40
2025 20
Total 177

Study selection and characteristics

Articles published from 2015 to 2025 were used for the research, of which a total of 177 articles met the 
inclusion criteria for the systematic review. These articles were chosen for the systematic review using 
systematic screening procedures during the study identification and selection process. The included studies 
have different types of research designs and approaches (experimental methodology), the study types 
include in vivo found in about 66 studies covering 37.3% of the studies, in vitro (n = 92, 52%), in silico (n = 
15, 8.5%), and other hybrid methods, which include human trial, computational, DIA proteomics, HCS (n = 
4, 2.3%). Due to rounding, the sum of various percentages may not equal 100% (Table 5). These studies 
have their origins in multiple research groups that use various models and analytical techniques to 
investigate and analyze the effects of phytoconstituents on diabetes (Figure 1). Table S1 lists the studies’ 
authors, year, title, plant/phytochemical, study type, diabetes model used, molecular target pathway, main 
findings, outcome, notes, diabetes model category, ROB, and tools used.

Table 5. Study type distribution.

Study type Number of studies (n) Percentage of studies (%)

In vivo 66 37.3%
In vitro 92 52.0%
In silico 15 8.5%
Other hybrid methods: human trial, computational, DIA proteomics, HCS 4 2.3%
Total 177 100.1%
HCS: high-content screening. Due to rounding, the sum of various percentages may not equal 100%.
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Relationship between study type and pathway focus

Cross-tabulation suggests that, focusing on the relationship between study type and molecular pathway, the 
PI3K/AKT and AMPK pathways were most investigated using combined in vitro and in vivo designs. In 
contrast, modulation of GLUT activity was more evenly distributed across in vitro and in vivo studies. 
Additionally, enzymatic inhibition (e.g., α-glucosidase, DPP-4) was predominantly explored in vitro or in 
silico. In contrast, computational models were primarily used for molecular docking, absorption, 
distribution, metabolism, excretion, and toxicity (ADMET) profiling, and virtual screening of 
phytoconstituents. This relationship complements the molecular evidence summarized in Table 2, 
confirming that hybrid models primarily investigated PI3K/AKT and AMPK mechanisms.

An experimental diabetes model was used

Various study models were used in the studies to investigate the phytoconstituents activity, the study 
models used includes; rodent models only (n = 85, 48.02%), cell line models only (n = 26, 14.69%), 
combined rodent and cell line models (n = 28, 15.82%), in silico computational models (n = 14, 7.91%), and 
others (e.g., zebrafish, organ-specific ex vivo system) (n = 23, 13.00%) (Table 6). This distribution 
demonstrates a firm reliance on whole-animal testing, which is supported by in vitro and in silico 
mechanistic studies.

Table 6. Diabetes model category.

Diabetes model Count of diabetes model Percentage (%)

Cell line models 26 14.69%
Cell line models and rodent models 28 15.82%
Human models 1 0.56%
In silico models 14 7.91%
Rodent models 85 48.02%
Others 23 13.00%
Total 177 100.00%

Therapeutic outcomes observed

From the articles reviewed, therapeutic outcomes were observed. The outcomes shown were 
heterogeneous. The most frequently observed therapeutic effects involve reduced glucose levels (n = 49), 
anti-inflammatory effects (n = 20), antioxidant activity (n = 10), improved insulin sensitivity (n = 7), 
improved lipid profile (n = 5), and other outcomes (renal function, pancreatic protection, cognitive 
improvements, hormonal regulation, etc.) were observed in 86 studies.

Synthesis of molecular-based therapeutic trends

An integrative review of the data revealed a strong alignment between pathway targeting and therapeutic 
outcomes, consistent improvements in glucose homeostasis across multiple models and compounds, and a 
high rate of insulin signaling modulation, suggesting a potential for mechanistic synergy and an emerging 
preference for hybrid study designs that support deeper validation of bioactivity.

Core study findings

The core study findings from the studies include that the most common study design found from the studies 
was in vitro having found in 52% of the studies, the most targeted pathway was the PI3K/AKT found in 
44.6% of the studies, the top therapeutic outcome was glucose reduction in about 27.7% of the studies, the 
leading study year was 2024 having a total number of 40 articles written in the year. The most used model 
type was the rodent model (e.g., rats, mice), accounting for 48.02% of the studies.
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Discussion
This systematic review qualitatively synthesizes data from 177 experimental trials (see Tables 1–3 and 
Figures 1 and 2) to evaluate the therapeutic potential and mechanistic basis of phytoconstituents in the 
management of diabetes. Preclinical research regularly and effectively targets a core group of dysregulated 
pathways, with the AMPK, PI3K/AKT, and GLUT signaling networks being the most frequently targeted. 
According to Taniguchi et al. [191] and Vargas et al. [3], the PI3K/AKT pathway is the canonical pathway for 
insulin-mediated glucose uptake and β-cell survival. At the same time, AMPK serves as a crucial master 
regulator of cellular energy homeostasis and a key sensor for insulin-sensitizing agents. The prevalence of 
these pathways is highly consistent with the known pathophysiology of diabetes. The noteworthy 
modification of these pathways by various phytoconstituents, such as beta-sitosterol, luteolin, and 
curcumin, highlights their potential as a rich source for targeted antidiabetic drug discovery [37, 180]. 
However, these mechanistic interpretations remain largely correlative; most included studies 
demonstrated pathway modulation through marker expression rather than direct causal validation using 
inhibitors or knockout models.

According to our review, one of the main advantages of the existing body of data is the move toward 
integrative, multi-model validation. A more comprehensive and physiologically plausible validation of 
bioactivity is provided by hybrid study designs, such as combining in vitro and in vivo techniques, rather 
than single-model investigations. The extensive use of insulin-resistant cell lines to discover basic 
processes, which are then confirmed in HFD/STZ rodent models, is one example of how cellular efficacy and 
whole-organism physiology can be effectively linked. In silico studies are also included (7.91% of included 
research), reflecting a modern approach to drug discovery. These computational methods enable the 
prediction of ADMET characteristics [192], the determination of binding affinities to diabetes targets (e.g., 
PTP1B, PPARγ), and the ranking of lead compounds for costly and time-consuming experimental work.

The reported therapeutic effects, which primarily include enhanced insulin sensitivity, improved 
glucose homeostasis, and reduced oxidative stress and inflammation, show patterns that are 
mechanistically consistent with the targeted pathways, although definitive causal validation is still limited. 
The observed antioxidant and anti-inflammatory benefits are particularly relevant, as oxidative stress and 
chronic low-grade inflammation have been shown to contribute to the pathogenesis of insulin resistance 
and diabetic complications [193]. This implies that one of the main advantages of phytoconstituents is their 
polypharmacological activity. Ficus deltoidea and Syzygium cumini are two examples of complex botanical 
extracts that can simultaneously modulate multiple pathological nodes, including insulin signaling, 
inflammation, and oxidative stress. This enables a comprehensive therapeutic profile that is well-suited to 
the multifaceted nature of diabetes [14, 136]. This contrasts with many synthetic medications that target 
only one specific site. However, this very complexity poses significant challenges for standardization, 
regulatory approval, and the precise identification of active principles.

Despite this promising preclinical outcome, our study reveals a significant translational gap. 78.53% of 
studies focus on rodent and cell-based models, which is not matched by a matching body of clinical 
evidence. The discrepancy between the bench and the bedside can be attributed to several key factors 
identified by our analysis. The first notable variation is in methodology. Directly comparing studies and 
extrapolating to human dose is extremely difficult due to the inconsistent phytoconstituent extraction 
methods, extract standardization, dosages, and treatment durations. Second, our risk assessment revealed 
that a significant majority of studies (≈ 69%) had a moderate ROB. Common issues were a lack of 
knowledge regarding randomization, allocation concealment, and blinding methods in in vivo experiments, 
which could inflate reported efficacy. Third, despite its potential, mechanistic evidence sometimes relies on 
correlational data rather than causal data. For example, without loss-of-function experiments (e.g., using 
pathway-specific inhibitors), improved glucose homeostasis and increased p-AKT expression are suggestive 
but do not prove causation.
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Limitations of the review

Despite using a comprehensive search approach and adhering to PRISMA principles, this review has 
limitations. The restriction on English-language publications may have led to language prejudice. The 
process and scope of article inclusion are visually summarized in Figure 1 to ensure transparency. 
Narrative synthesis is inherently more susceptible to interpretive bias than meta-analysis, due to significant 
variation in experimental paradigms, outcomes, and substances. Furthermore, although we assessed the 
ROB in the included studies, selection bias may still be present because, due to resource constraints, our 
own screening and data extraction process did not employ full, dual-independent screening at every stage, 
despite being conducted with cross-checking and consensus.

Future perspectives

It is necessary to close the indicated translational gap to utilize phytoconstituents for the treatment of 
diabetes. Future research should concentrate on:

The implementation of proven protocols for the extraction, characterization, and standardization of 
plant extracts is necessary to ensure repeatability and precise dosing. Finding isolated active 
principles or producing standardized extracts (with known flag molecules) is a significant scientific 
and regulatory conundrum.

1.

Mechanistic rigour: Examining causal linkages using specific pharmacological inhibitors or genetic 
knockout models to confirm the involvement of proposed pathways, going beyond correlational 
observations.

2.

Clinical translation is the process of developing closely watched early-stage clinical studies that 
verify pre-clinical findings in humans using mechanistic biomarkers (e.g., assessing pathway 
activation in patient samples). The successes and failures of earlier clinical studies of better-known 
diabetic herbs should serve as guidance for these investigations.

3.

Solutions for bioavailability: New delivery strategies (such as nanoparticles and phospholipid 
complexes) are being researched in an effort to solve the limited bioavailability that plagues many 
otherwise promising phytoconstituents.

4.

Integrated methods: In vitro and in vivo models are being utilized in conjunction with in silico 
predictions to efficiently find and evaluate the most promising lead drugs with good ADMET 
profiles.

5.

This comprehensive review, which focuses on AMPK, PI3K/AKT, and GLUT as the primary mechanisms 
of action, concludes by combining compelling preclinical evidence demonstrating that phytoconstituents 
significantly modify key pathways associated with diabetes. Their pleiotropic effects align with the complex 
nature of diabetes. However, the transition from promising pre-clinical data to clinical application is 
hampered by methodological errors, bioavailability issues, and a lack of human studies. Addressing these 
problems through systematic, rigorous, and translational research is necessary to fully realize the medicinal 
potential of the plant kingdom in the global fight against diabetes.

In conclusion, this systematic review integrates a wealth of pre-clinical evidence demonstrating that 
phytoconstituents effectively ameliorate diabetes symptoms by targeted modification of key biochemical 
pathways, including PI3K/AKT, GLUT, and AMPK signaling. Mechanistically coherent and consistently 
documented are improvements in insulin sensitivity and glucose homeostasis, and reductions in oxidative 
stress and inflammation across various experimental paradigms. Unfortunately, the translation of this high 
pre-clinical promise into clinical practice is significantly limited by a severe shortage of human trials, 
significant methodological heterogeneity, and a modest ROB in current investigations. We are now at a 
pivotal moment in the field. Future studies should focus on standardizing phytoconstituent extraction and 
characterization, developing mechanistic evidence, and conducting meticulously organized clinical trials to 
validate these preclinical mechanisms in human subjects. These problems can be addressed by carefully 
evaluating the substantial therapeutic potential of plant-derived chemicals and applying them to develop 
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novel, multi-targeted strategies for the worldwide management of diabetes mellitus. This conclusion is 
based on integrated results across experimental models and pathways (Tables 1–3, Figures 1 and 2).
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