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Abstract
Interventional radiology (IR) is an ideal domain for artificial intelligence (AI) due to its data-intensive 
nature. This review provides a targeted guide for clinicians on AI applications in liver interventions, 
specifically focusing on hepatocellular carcinoma and portal hypertension. Key findings from recent 
literature demonstrate that AI models achieve high accuracy in predicting the response to transarterial 
chemoembolization and in non-invasively estimating the hepatic venous pressure gradient. Furthermore, 
emerging deep learning architectures, such as Swin Transformers, are outperforming traditional mRECIST 
criteria in longitudinal treatment monitoring. Despite these technical successes, the transition from “code 
to bedside” is hindered by limited external validation and the “black box” nature of complex algorithms. We 
conclude that the future of IR lies in the “AI-augmented” interventional radiologist paradigm, in which AI 
serves as a precision tool for patient selection and procedural safety rather than as a replacement for 
clinical judgment.
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Introduction
Liver cancer is a global health challenge, with hepatocellular carcinoma (HCC) being its most common form, 
and its management is a cornerstone of modern interventional radiology (IR) practice [1, 2]. Similarly, 
portal hypertension (PHT), a major sequela of chronic liver disease, often requires complex, image-guided 
interventions, such as the placement of a transjugular intrahepatic portosystemic shunt (TIPS) [3–5]. The 
treatment of these conditions has been revolutionized by a growing arsenal of minimally invasive 
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procedures, including transarterial chemoembolization (TACE), radioembolization (TARE), thermal 
ablation, and portal vein embolization (PVE) [6–10].

The modern management of liver disease now generates an overwhelming amount of disparate data, 
from advanced multimodality imaging and radiomics to clinical, laboratory, and genomic information [11]. 
Managing this complex data to make personalized treatment decisions presents a significant challenge. 
Artificial intelligence (AI) has emerged as a powerful tool to meet this challenge, and the field of IR is 
exceptionally well-suited for its application [12]. Unlike other interventional specialties, IR is an inherently 
data-rich field where entire image-guided procedures are recorded in a standardized digital format, 
creating an ideal ecosystem for AI-powered innovation [13]. This positions interventional radiologists not 
just as consumers of AI technology, but as potential leaders in developing groundbreaking tools for the 
entire interventional community [13].

In routine practice, interventionalists rely primarily on qualitative visual assessments of imaging and 
static staging systems, such as the Barcelona Clinic Liver Cancer (BCLC) criteria, to guide therapeutic 
decisions [14]. However, these conventional methods often fail to account for the complex biological micro-
heterogeneity of liver tumors or the highly variable hemodynamics of PHT [15]. This leads to a “one-size-
fits-all” approach in which, for example, up to 40% of patients may not achieve the predicted response to 
TACE or may develop unforeseen complications, such as overt hepatic encephalopathy (OHE) after TIPS 
placement [16–18]. AI offers a transformative solution to these shortcomings by extracting sub-visual 
“radiomic” features and processing multidimensional datasets that exceed human cognitive capacity, 
enabling a shift from generalized protocols to truly personalized medicine [15].

The path to clinical integration is not without obstacles. Advanced deep learning (DL) models require 
vast amounts of high-quality data, yet IR datasets are often smaller and less standardized than those in 
diagnostic radiology, influenced by operator variability, diverse patient conditions, and specific procedural 
contexts [19]. Furthermore, a lack of formal training in AI among clinicians can create a barrier to 
understanding, trusting, and effectively participating in the development and deployment of these powerful 
new tools [19, 20]. This gap is underscored by the fact that while the total number of FDA-cleared AI 
algorithms has surged to over 1,250, the share specifically dedicated to interventional procedures remains 
minimal, highlighting the specialty’s continuous unmet need for a clear roadmap from “code to bedside” 
[21].

The objective of this review is to offer a comprehensive guide for practicing interventional radiologists, 
bridging the gap between foundational AI concepts and their real-world clinical applications in the 
management of liver disease. We will first review a concise primer on essential AI terminology, 
frameworks, and life cycles. The core of the manuscript will then survey the current and emerging 
applications of AI in the management of HCC and PHT. Finally, we will discuss overarching challenges and 
outline the future of the field, guided by the research priorities established by major international IR 
societies [21, 22].

An IR-focused primer on AI fundamentals
To critically evaluate and integrate AI into clinical practice, a foundational understanding of its core 
concepts is essential [20]. AI is a broad, umbrella term for computer-based systems that perform tasks 
requiring human-like intelligence, such as pattern recognition and problem-solving [11, 23]. Within this 
field, machine learning (ML) is a key subset where algorithms are not explicitly programmed but instead 
learn complex, non-linear relationships directly from data [11, 20]. DL is a further specialization of ML that 
uses advanced architectures, including artificial neural networks (ANNs) with many layers, to automatically 
extract and learn features from complex data (e.g., medical images) with minimal human intervention [11, 
20, 24] (Figure 1).
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Figure 1. The foundational hierarchy and examples of artificial intelligence (AI), machine learning, deep learning, and 
generative AI.

Core architectures and clinical models

The way a model learns is defined by its training data. In supervised learning, the most common approach 
in medicine, the model is trained on a dataset where inputs are labeled with the correct outputs (e.g., CT 
images labeled with the presence or absence of PHT) [11, 20]. In contrast, unsupervised learning uses 
unlabeled data, and the model’s task is to find hidden patterns or relationships on its own [20]. There are 
two types of DL architecture particularly relevant to the interventional management of liver disease.

Convolutional neural networks (CNNs): For years, CNNs have been the workhorse of medical 
imaging [11, 25]. Inspired by the human visual cortex, they are exceptionally good at processing grid-
like data, such as images, to perform tasks including the classification and segmentation of liver 
tumors [23, 25–27].

•

Transformers: Originally developed for natural language processing (for example, the models behind 
ChatGPT), Transformers are now achieving state-of-the-art results in medical imaging [19, 28]. 
Architectures such as the Swin Transformer hierarchically capture both global and local features, 
making them highly effective for analyzing high-resolution, 3D medical images (e.g., CT and MRI 
scans) for tasks such as prognostic modeling in HCC [28–32].

•

Specific DL models, categorized by their interventional task—such as ProgSwin-UNETR for monitoring 
TACE response or the aHVPG Model for non-invasive pressure estimation—are detailed in Table 1.

Table 1. Example deep learning models and their interventional relevance.

Model name Primary architecture/Type Core clinical task Relevant IR procedure/Application

ProgSwin-UNETR Swin Transformer/DL Longitudinal prognosis stratification Monitoring HCC response after 
TACE

aHVPG Model AutoML/CNN Non-invasive prediction of HVPG 
(pressure gradient)

PHT diagnosis; TIPS candidacy

Swin-UNETR CNN/Transformer Hybrid 3D segmentation of tumors and 
organs at risk

Y-90 dosimetry planning; ablation 
simulation

Neuro-Vascular 
Assist

Real-Time AI System Real-time safety monitoring (detects 
migrating embolic agents)

Visceral or neuro-embolization
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Table 1. Example deep learning models and their interventional relevance. (continued)

Model name Primary architecture/Type Core clinical task Relevant IR procedure/Application

ChatGPT (GPT-4) Large Language Model 
(LLM)

Statistical analysis and data 
interpretation

Accelerating clinical research and 
protocol design

K-Net/MobileViT CNN/Transformer Hybrid 
(Dual-Stage)

High-accuracy segmentation and 
classification

Nodule/Lesion triage and feature 
analysis

IR: interventional radiology; DL: deep learning; HCC: hepatocellular carcinoma; TACE: transarterial chemoembolization; ML: 
machine learning; CNN: convolutional neural network; HVPG: hepatic venous pressure gradient; PHT: portal hypertension; 
TIPS: transjugular intrahepatic portosystemic shunt; AI: artificial intelligence.

Radiomics: extracting data from images

A key process enabling AI in radiology is radiomics, which involves the high-throughput extraction of a 
large number of quantitative features from medical images [3, 13]. This process converts images into 
mineable data, capturing characteristics of tumor shape, intensity, and texture that are often imperceptible 
to the human eye [24, 25]. This is particularly well-suited for characterizing the heterogeneity of HCC from 
CT and MRI scans [24]. These radiomic features can then be fed into ML models to build tools that predict 
diagnosis, treatment response, or prognosis [1, 13, 24].

Classifying AI systems in IR

To help clinicians better understand and evaluate different AI tools, several classification frameworks have 
been proposed. One pragmatic approach categorizes AI systems based on their complexity and 
interpretability, distinguishing between simple, fully explainable models and complex, non-interpretable 
black-box models that require more scrutiny [20]. More recently, specific frameworks were developed to 
score the level of technological integration for robotic and navigation systems [33, 34]. These include the 
Levels of Autonomy in Surgical Robotics (LASR) scale, which rates a system’s ability to act independently, 
and the novel Levels of Integration of Advanced Imaging and AI (LIAI2) scale, which assesses how deeply AI 
is embedded into the procedural workflow [33, 35]. As will be discussed, a systematic review of currently 
available systems in IR found that most remain at a low level on both of these scales [33] (Table 2).

Table 2. Levels of autonomy (LASR) and AI integration (LIAI2) classification scales.

Scale Purpose Range Core concept at the highest level

LASR 
(autonomy)

Classifies the robot’s degree of 
independence from human control

0 (no autonomy) to 5 
(full autonomy)

Full autonomy: The system performs the entire 
procedure based on predefined objectives 
without human intervention.

LIAI2 
(integration)

Classifies the sophistication and 
depth of integration of AI and 
advanced imaging within the 
workflow

1 (guided assistance) 
to 5 (full autonomous 
navigation)

Full autonomous navigation: The system fully 
integrates advanced imaging and AI to 
independently perform and navigate the 
intervention.

AI: artificial intelligence; LASR: Levels of Autonomy in Surgical Robotics; LIAI2: Levels of Integration of Advanced Imaging and 
AI.

The AI project lifecycle: from data to deployment

The process of building and implementing an AI model follows a rigorous, multi-stage lifecycle (Table 3). 
For interventional radiologists, understanding this pipeline—from initial data acquisition to final 
deployment—is essential for interpreting research and ensuring clinical relevance.

Table 3. The AI project lifecycle: from data to clinical deployment.

Stage Key steps Activities IR relevance and goal

Define 
problem

Identify a clear clinical question (e.g., 
predicting TACE response)

Conception & Data

Acquisition Gather multimodal data, including 
imaging, labs, and clinical records

The goal is to obtain sufficient, high-quality data 
despite scarcity challenges in IR

Labeling Assign a “ground truth” to the data (e.g., 
manual tumor segmentation or 
classifying patient outcome

Preprocessing & 
Curation

Clinician expertise is required to perform 
accurate labeling and to ensure features reflect 
meaningful pathology
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Table 3. The AI project lifecycle: from data to clinical deployment. (continued)

Stage Key steps Activities IR relevance and goal

Feature 
extraction

Transform images into quantitative data 
(e.g., radiomic features from HCC 
texture)

Split data Separate the dataset into training, 
validation, and untouched testing sets

External 
validation

Test the final model on data from a 
different center to prove generalizability

Validation & 
Testing

Mitigate 
overfitting

Ensure the model performs well on new 
data and does not fail due to over-
memorization

This stage establishes rigor: models must prove 
accuracy on unseen patients to be considered 
trustworthy for clinical decision-making

Evaluation Quantify performance using clinical 
metrics such as AUC, sensitivity, and 
specificity

Deployment & 
Integration

Workflow 
integration

Ensure the tool fits seamlessly into the 
IR suite and minimizes disruption to 
existing protocols

The goal is to achieve genuine clinical benefit 
by overcoming practical barriers and securing 
clinician trust before routine use

AI: artificial intelligence; TACE: transarterial chemoembolization; IR: interventional radiology; HCC: hepatocellular carcinoma; 
AUC: Area Under the Curve.

Problem definition and data acquisition

The life of an AI model begins with defining a clinically relevant problem (e.g., predicting TACE non-
response) and identifying the necessary data inputs. In IR, this involves synthesizing multimodal data, 
including imaging, laboratory values, and clinical records, which is critical given IR’s inherent multimodal 
nature [11]. The goal is to develop instruments for image segmentation, simulation, registration, and 
multimodality image fusion [21]. Given that IR datasets are often limited, acquiring high-quality, ethically 
sourced data is the primary logistical hurdle [19, 36].

Data preprocessing and curation

Once acquired, raw data must be preprocessed. This crucial step includes image registration, normalization, 
and labeling. For supervised models, labeling is the labor-intensive process of assigning a ground truth to 
the input data (e.g., manually segmenting a tumor or labeling a patient as a one-hot encoding responder) 
[11]. This labeling often requires the expertise of interventional radiologists [37]. Preprocessing also 
involves feature extraction, transforming images into quantitative radiomics data. Radiomic features 
capture characteristics of tumor shape, intensity, and texture that are often imperceptible to the human eye, 
particularly in HCC [1].

Model training, validation, and testing

The available dataset is split into three distinct sets to ensure robust evaluation. The training set is used to 
adjust the model’s internal parameters (weights) iteratively. The validation set is used during training to 
fine-tune model hyperparameters and prevent overfitting (when the model memorizes the training data 
but fails to generalize). The testing set is a portion of the original data kept entirely separate and used only 
once, at the end, to assess final real-world performance. Crucially, modern high-quality research also 
requires external validation—testing the model on data collected from a different institution or population 
to confirm generalizability. Studies that fail to perform external validation risk a significant drop in 
accuracy in clinical practice, a phenomenon known as overfitting, in which a model performs well on its 
training data but fails on new, unseen data.

Performance evaluation and clinical deployment

Model performance is quantified using key metrics relevant to clinical risk, such as the Area Under the 
Curve (AUC), accuracy, sensitivity, and specificity. However, the process does not end with high metrics. 
The final stage is deployment—the envisioned pathway from a lab algorithm to routine clinical use. This 
requires mitigating ethical biases and ensuring the AI tool seamlessly integrates into existing workflows, 
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minimizing disruption to the IR suite [37]. Deployment is the ultimate safeguard for determining whether 
the AI tool can provide a genuine clinical benefit.

AI applications in the interventional management of liver disease
AI demonstrates significant potential across the full spectrum of interventional liver disease management. 
Current research and early clinical applications can be organized by the primary clinical problems they aim 
to solve: managing HCC, assessing and treating PHT, and optimizing patients for surgical resection 
(Table 4).

Table 4. AI applications in liver interventions: from routine shortcomings to AI solutions.

Phase Clinical 
application

Conventional method AI methodology AI advantage Reference(s)

Predicting TACE 
response

Visual CT/MRI & BCLC 
staging. High inter-observer 
variability; fails to capture 
sub-visual tumor 
heterogeneity.

Multimodal models using 
radiomics, DL, and clinical 
data (ALBI, BCLC, AFP).

AUROC > 0.85. 
Improves patient 
selection and avoids 
futile procedures.

[6, 28, 37, 
38]

Non-invasive 
PHT 
assessment

Invasive HVPG 
measurement. Procedural 
risk and requirement for 
highly specialized 
expertise.

Radiomics and DL models 
(e.g., aHVPG) are 
analyzing CT features of 
the liver and spleen.

Non-invasively 
estimate HVPG to 
stratify risk and 
guide TIPS 
candidacy.

[1, 4, 53]

Predicting post-
TIPS 
complications

Clinical scores (MELD, 
Child-Pugh). Limited 
predictive power for post-
TIPS OHE.

Radiomics, ANNs, and 
various ML models.

Accurately forecast 
the risk of OHE for 
counseling.

[3, 4]

Pre-
procedural

Predicting PVE 
success

2D/3D CT volumetry. 
Volume does not always 
equal function; difficult to 
predict actual hypertrophy 
kinetics.

Multimodal models using 
Statistical Shape Models to 
quantify 3D liver anatomy.

Forecast FLR 
hypertrophy to 
optimize surgical 
planning.

[7]

Treatment 
simulation

Standard anatomical 
landmarks. Fails to account 
for heat-sink effects or 
perfusion-based 
boundaries.

DL models to predict 
ablation zones and simulate 
Y-90 radioembolization 
dosimetry.

Optimize probe 
placement and 
increase quantitative 
accuracy of 
dosimetry.

[24, 39–41]Intra-
procedural

Image quality 
improvement

Conventional imaging 
filters. High radiation dose 
or poor visualization due to 
artifacts.

DLR for dose reduction; DL 
to reduce metal artifacts or 
generate synthetic DSA.

Lower radiation 
dose; improve 
visualization and 
safety during 
procedures.

[19, 24, 47]

Longitudinal 
monitoring of 
HCC

mRECIST criteria. Does not 
account for dynamic 
metabolic changes or 
internal necrosis patterns.

DL (Transformers) using 
multi-time-point MRI data to 
track tumor changes.

More accurate 
prognostic 
stratification than 
diameter-based 
criteria.

[28]Post-
procedural

Detecting tumor 
recurrence

Manual surveillance review. 
Potential for human error in 
identifying subtle early 
progression.

ML, radiomics, and CNNs. Automated and early 
detection of LTP 
after ablation.

[24, 46]

AI: artificial intelligence; TACE: transarterial chemoembolization; BCLC: Barcelona Clinic Liver Cancer; DL: deep learning; ALBI: 
albumin-bilirubin; AFP: alpha-fetoprotein; AUROC: area under the receiver operating characteristic curve; PHT: portal 
hypertension; HVPG: hepatic venous pressure gradient; TIPS: transjugular intrahepatic portosystemic shunt; MELD: model for 
end-stage liver disease; OHE: overt hepatic encephalopathy; ANNs: artificial neural networks; ML: machine learning; FLR: 
future liver remnant; Y-90: Yttrium-90; DLR: DL reconstruction; DSA: digital subtraction angiography; HCC: hepatocellular 
carcinoma; mRECIST: Modified Response Evaluation Criteria in Solid Tumors; CNNs: convolutional neural networks; LTP: local 
tumor progression.

Hepatocellular carcinoma

As a primary focus of interventional oncology, HCC has become a key use case for AI development, with a 
particular emphasis on predicting patient response to locoregional therapies [21].
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Pre-procedural patient selection for TACE

TACE is a cornerstone therapy for intermediate-stage HCC, but patient response is highly variable [6, 37]. 
Consequently, the most studied application of AI in interventional oncology is the development of models to 
predict which patients will benefit from TACE before the procedure is performed [24, 37]. Systematic 
reviews and meta-analyses have confirmed that these AI models demonstrate strong predictive 
performance. One meta-analysis of 11 studies found that AI models achieved high pooled area under the 
receiver operating characteristic (ROC) curve (AUROC) values of 0.89 on internal validation and 0.81 on 
external validation, confirming their robustness [38].

A consistent theme is that multimodal models that integrate different data types yield the best results. 
Systematic reviews involving 23 studies with 4,486 patients have found that models combining clinical 
variables [including albumin-bilirubin (ALBI) grade, BCLC stage, and alpha-fetoprotein (AFP) level] with 
radiologic features (including tumor diameter, distribution, and peritumoral arterial enhancement) achieve 
higher predictive performance than models using clinical or imaging features alone [6, 37]. However, a 
recent meta-analysis added nuance, finding no statistically significant performance difference between 
advanced DL models and traditional handcrafted radiomics (HCR) models, nor between models with and 
without added clinical data [38]. The authors suggested that AI models may be able to implicitly learn 
clinical information directly from imaging data [38].

Longitudinal monitoring of treatment response

AI is also advancing beyond static, single-time-point assessments to perform longitudinal analysis that 
tracks tumor changes over time. A state-of-the-art study by Yao et al. [28] developed a DL model, ProgSwin-
UNETR, to predict the long-term prognosis of HCC patients by analyzing a series of arterial-phase MRI scans 
taken at three different time points: before treatment, after the first TACE, and after the second TACE. By 
learning from these dynamic changes, the model stratified patients into four distinct risk groups with high 
accuracy (AUC of 0.92) and significantly outperformed both traditional radiomics models and the standard 
Modified Response Evaluation Criteria in Solid Tumors (mRECIST) criteria in predicting patient survival 
[28].

Intra- and post-procedural applications for HCC

Beyond TACE, AI tools are being developed for other liver-directed therapies.

AI for Y-90 dosimetry and planning: Segmentation of organs at risk and tumors is a critical, labor-
intensive step in Y-90 TARE dosimetry planning. CNNs have been successfully developed for the 
automated segmentation of lungs, liver, and tumors on Tc-99m MAA SPECT/CT images, drastically 
reducing operator time [39]. AI is also being used to improve the technical accuracy of the dosimetry 
itself. A DL framework that employs CNNs for scatter correction and absorbed dose-rate estimation 
was developed to mitigate the impact of poor image quality from bremsstrahlung SPECT. This model 
was found to outperform the conventional Monte Carlo (MC) dosimetry method in virtual patient 
studies by 66% in Normalized Mean Absolute Error (NMAE), offering faster computation and higher 
accuracy [40]. Crucially, advanced AI tools that incorporate multimodal data are necessary because 
standard anatomical segmentation is insufficient for Y-90 TARE planning. Using contrast-enhanced 
Cone-Beam CT (CBCT) to define liver perfusion territories (LPTs), one study found that using 
standard anatomical landmarks instead of perfusion-based boundaries could lead to dosimetric 
errors of up to 21 Gy in the left liver lobe, highlighting the critical value of AI-assisted image 
registration and segmentation of functional territories [41].

•

Treatment simulation and image quality: For thermal ablation, AI-driven treatment simulation 
models can predict the size and shape of an ablation zone before the procedure, accounting for real-
world factors such as the heat-sink effect from nearby blood vessels [24, 42, 43]. For 
radioembolization, AI can be used to automate the segmentation of the liver and tumors on planning 
scans for dosimetry and to simulate the biodistribution of Y-90 microspheres [24, 39–41, 44]. For 

•
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follow-up, AI models are demonstrating high accuracy (AUC up to 0.99) in detecting local tumor 
progression (LTP) on surveillance CT scans after thermal ablation [24, 45, 46].

Image quality improvement: AI enhances the quality of the images that guide interventions. DL 
reconstruction (DLR) algorithms reduce image noise and enable significant reductions in radiation 
dose during CT-guided procedures while maintaining image quality [24, 47]. Another application 
involves DL models that generate high-quality, artifact-free synthetic digital subtraction angiography 
(DSA) images for abdominal angiography, overcoming motion-related misregistration and 
potentially reducing radiation exposure [19, 24, 47].

•

Dynamic video analysis and real-time AI: While most current AI applications in IR rely on static pre-
procedural imaging, significant progress involves the analysis of dynamic, video-based data 
generated during fluoroscopy and angiography. Unlike static CT or MRI, procedural video requires AI 
models capable of temporal reasoning—understanding how structures or tools move over time. 
Methodologies developed in adjacent fields, such as real-time polyp detection in colonoscopy, 
provide a valuable roadmap for IR [48–50]. In gastroenterology, DL models (e.g., CNNs combined 
with temporal filtering) have reached high levels of accuracy in identifying lesions on live video 
feeds, reducing “miss rates” significantly. Transferring these approaches to IR could enable real-time 
“computer-aided detection” of subtle findings, such as the early detection of liquid embolic migration 
or the automated tracking of catheter tips during complex navigation [51, 52]. Such tools could shift 
the role of AI from a pre-procedural planning aid to an active, “over-the-shoulder” safety monitor 
during live interventions.

•

Portal hypertension

AI is developing powerful, non-invasive tools to assist in diagnosing and managing PHT and its 
complications.

Non-invasive diagnosis and risk stratification: The gold standard for assessing the severity of PHT is 
the invasive measurement of the hepatic venous pressure gradient (HVPG) [4, 53]. To overcome this, 
an automated AI model (aHVPG) was developed that uses radiomics from CT scans of the liver and 
spleen to accurately estimate the HVPG, significantly outperforming conventional non-invasive tools 
[53]. Another multimodal model combined clinical data (portal vein diameter, Child-Pugh score) 
with radiomic and DL features extracted from the non-tumorous liver parenchyma to predict the 
presence of PHT [1].

•

Predicting post-TIPS complications: For patients undergoing TIPS, a major concern is the risk of 
post-procedural OHE. Several AI approaches—including CT-based radiomics, ANNs, and other ML 
models—have been successfully used to predict the risk of post-TIPS OHE, with models consistently 
achieving high AUROCs greater than 0.80 [3, 4].

•

Surgical optimization (pre-hepatectomy IR)

AI is also being applied to PVE, a critical IR procedure performed to induce hypertrophy of the future liver 
remnant (FLR) before a major hepatectomy for colorectal liver metastases [7]. The success of the 
subsequent surgery depends on achieving adequate liver growth. A recent state-of-the-art, multicenter 
study developed an ML model to predict post-PVE outcomes, including the final FLR percentage [7]. This 
study is a benchmark for advanced AI methodology, as it integrated multimodal data (clinical, laboratory, 
and radiomic features) and introduced a novel Statistical Shape Model to mathematically quantify the 3D 
shape of the liver as a predictive feature. Critically, the study validated its model on an external dataset 
from a separate institution, demonstrating strong generalizability and addressing a common limitation in 
AI research [7].
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Biliary interventions and advanced fatty liver

Beyond oncology and PHT, AI is increasingly relevant in the management of biliary obstructive diseases and 
metabolic liver conditions. In biliary interventions, DL models, such as CNNs, are being developed to assist 
in the automated mapping of the biliary tree from magnetic resonance cholangiopancreatography (MRCP) 
[54]. These tools can accurately detect common bile duct stones (90.5%) and distinguish between benign 
and malignant biliary strictures with high sensitivity (82.4%), potentially guiding complex interventions, 
such as percutaneous transhepatic biliary drainage (PTBD), by reducing the reliance on extensive ductal 
opacification on fluoroscopy [54, 55]. Furthermore, novel augmented reality (AR) navigation systems are 
emerging that automatically register the biliary anatomy to 3D CT coordinates, allowing for precise real-
time tracking of interventional instrument tips during biliary procedures [56].

In the context of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD), AI-powered 
ultrasound and CT tools now facilitate the non-invasive quantification of liver fat and fibrosis [57]. DL 
algorithms applied to non-enhanced CT scans can automatically measure liver attenuation and convert it to 
a fat fraction, achieving high correlation with manual measurements and traditional MRI-PDFF (r2 = 0.92) 
[58]. This capability is critical for IR when assessing procedural safety; for instance, quantifying the degree 
of steatosis or fibrosis in the non-tumorous liver is essential for predicting the risk of post-embolization 
liver failure or evaluating the quality of the FLR after PVE [57, 58].

Key challenges on the path to clinical integration
The integration of AI into the interventional management of liver disease is rapidly moving from a 
theoretical possibility to a clinical reality. The evidence demonstrates that AI is poised to enhance every 
phase of the IR workflow. In the pre-procedural phase, AI models are showing robust performance in 
predicting treatment outcomes for core liver-directed procedures, including TACE and TIPS [3, 6]. Intra-
procedurally, advanced imaging techniques are reducing radiation dose and improving image quality [24, 
46]. Post-procedurally, AI automates the labor-intensive tasks of surveillance and follow-up, offering a level 
of consistency that can surpass human performance [59]. However, the path from a promising algorithm to 
a fully integrated and trusted clinical tool is paved with significant challenges (Table 5).

Table 5. Key challenges and future directions for AI in liver interventions.

Category Key points Description Reference(s)

Data-related 
hurdles

Scarcity of large, high-quality, and standardized IR datasets.

“Garbage in, garbage out”: poor image quality leads to AI failure.

Ethical issues surrounding data privacy, ownership, and security.

[19, 23, 36, 59, 
60]

Methodological 
barriers

The “black box” problem and the need for explainable AI (XAI).

Lack of external validation, leading to overfitting.
High heterogeneity across studies makes comparing results difficult.

[1, 20, 23, 28, 37, 
38, 61, 62]

Challenges

Clinical & ethical 
dilemmas

Risk of amplifying existing societal biases (algorithmic bias).

Unclear accountability for AI-related adverse events.
Difficulty with practical workflow integration.

Risk of “futile technologization” (expensive tech with marginal benefit).

[19, 35, 37, 60]

A guided research 
agenda

The SIR Foundation has prioritized HCC as a key use case.

Immediate research needs include tools for segmentation, simulation, 
and navigation.
A top priority is creating shared data commons to accelerate research.

[21]

Emerging 
technologies

Shift toward powerful, adaptable foundation models.
Use of generative AI (e.g., ChatGPT) as a research tool.

Creation of “synthetic cohorts” to serve as control arms in clinical trials.

[19, 20, 64]

Future 
directions

Ensuring quality & 
trust

Widespread adoption of standardized reporting guidelines, such as the 
iCARE checklist, is essential to ensure future research is reproducible, 
transparent, and trustworthy.

[19, 63]

AI: artificial intelligence; IR: interventional radiology; HCC: hepatocellular carcinoma; iCARE: Interventional Radiology Reporting 
Standards and Checklist for Artificial Intelligence Research Evaluation.
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Data-related hurdles

The performance of any AI model is fundamentally dependent on the data used to train it. A primary 
challenge in IR is the relative scarcity of large, high-quality, and standardized datasets compared to 
diagnostic radiology, which can limit the development of robust models [19, 36]. This is compounded by the 
“garbage in, garbage out” principle; AI models can fail if the input data is of poor quality, as demonstrated in 
studies where data heterogeneity and quality issues are a primary concern [36].

Furthermore, the use of patient data raises profound ethical questions about data privacy, ownership, 
and security [23, 60]. A proposed framework suggests treating de-identified patient data for secondary 
research as a “public good” that can be shared to advance medicine but not sold for profit, a concept that 
requires broad consensus and strong governance to implement [60].

Methodological and technical barriers

A common concern among clinicians is the “black box” nature of many DL models, where the reasoning 
behind a prediction is not easily understood [20, 23]. This lack of interpretability can be a major barrier to 
clinical trust. Consequently, a key area of modern AI research is explainable AI (XAI), which aims to open 
this black box and provide insights into the model’s decision-making process [61]. Techniques such as 
Grad-CAM++, which generate heatmaps to visualize the image regions an AI is focusing on, are a practical 
example of XAI in action [28].

The field is also challenged by a lack of methodological rigor. Systematic reviews and meta-analyses 
have found significant heterogeneity across studies, with different research groups using varied algorithms 
and datasets, making it difficult to compare results directly [38, 62]. Many studies are single-center and lack 
external validation, raising questions about their generalizability and sometimes leading to overfitting, 
where a model performs well on its training data but fails on new, unseen data [1, 37].

Clinical and ethical dilemmas

Beyond the data and methods, several ethical and practical issues must be addressed.

Algorithmic bias: AI models trained on historical healthcare data can inadvertently learn and amplify 
existing societal biases related to race, socioeconomic status, or geography, potentially worsening 
healthcare disparities [19, 60]. For example, an AI trained on data where disadvantaged patients 
have worse outcomes might learn to recommend against treating them [60].

•

Accountability for errors: A critical question is who is responsible when an AI-related adverse event 
occurs. A reasonable framework approaches this similarly to medical device litigation, where fault 
could lie with the developer for a flawed product or with the clinician for its improper use [60].

•

Workflow integration: Many AI tools developed in a research setting are difficult to integrate into 
complex clinical workflows. Cumbersome requirements, such as the need for manual tumor 
segmentation before a model can be used, are a major barrier to practical adoption [37].

•

Futile technologization: Finally, there is a risk of developing expensive, sophisticated technologies 
that provide only marginal clinical benefit, a phenomenon termed “futile technologization” [35]. 
Experts caution that innovation must be rigorously evaluated to ensure it is driven by clinical 
relevance and improves patient outcomes, rather than by commercial pressure [35].

•

Discussion
The findings of this narrative review underscore a pivotal shift in the interventional management of liver 
disease. Traditional clinical decision-making relies on a diverse yet often subjective set of data modalities 
that are frequently prone to inter-observer variability and high cognitive load [23]. The integration of AI, 
particularly DL and radiomics, represents a paradigm shift from qualitative visual assessments to a 
quantitative, data-driven approach that extracts diagnostic and prognostic information often imperceptible 
to the human eye [15, 24].
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In the management of HCC, AI models have demonstrated an ability to stratify patient risk with an 
accuracy that matches or, in some cases, surpasses that of expert radiologists, particularly in predicting 
response to locoregional therapies, such as TACE [6, 38]. Similarly, the development of non-invasive tools 
for PHT assessment addresses a critical clinical need by providing support for early intervention and 
personalized treatment strategies without the risks associated with invasive HVPG measurement [4, 53]. 
Beyond oncology and cirrhosis, the emerging use of AI in biliary obstructive diseases and automated fatty 
liver quantification further broadens the scope of the “AI-augmented” interventionalist, allowing for more 
precise procedural guidance and comprehensive risk assessment [54, 55].

The clinical impact of these tools lies in their potential to standardize diagnostic quality and optimize 
outcomes [13]. While currently most advanced in diagnostic and post-processing tasks, interventional 
applications are beginning to mature, offering measurable gains in catheter navigation, probe placement, 
and ablation success [33, 52].

Challenges and future directions
Despite the transformative potential of AI in hepatology and IR, several significant hurdles remain that 
impede its widespread clinical adoption (Table 5).

Methodological and data barriers: Most current AI research is retrospective and limited by small, 
single-center datasets, which raises concerns regarding the generalizability and robustness of 
models across different clinical environments [19, 36].

•

Interpretability and trust: The “black box” nature of complex DL architectures erodes clinician trust, 
as the rationale behind AI-generated recommendations is often opaque [20, 61].

•

Workflow integration: Practical implementation faces logistical hurdles, including the need for 
institutional support, interoperability with existing electronic health records, and clinician training 
[22, 37].

•

Ethical and regulatory issues: Algorithmic bias, data privacy concerns, and the lack of clear legal 
liability frameworks for AI-driven errors remain critical issues needing resolution [19, 60].

•

Moving forward, the field must be guided by the research priorities established by the SIR Foundation 
Research Consensus Panel, which emphasized the creation of “shared data commons” and prioritized HCC 
as the primary use case for personalized, AI-driven algorithms [21]. Future research must prioritize 
multicenter, prospective validation and the development of XAI to improve model transparency [28, 63]. 
Technological paradigms are already shifting toward foundation models and generative AI (e.g., ChatGPT) 
to accelerate clinical research and statistical analysis [20, 64]. Furthermore, innovative concepts such as 
“synthetic cohorts” of virtual patients may soon mitigate the difficulties of clinical trial recruitment [19]. 
Ultimately, the successful and responsible integration of AI will depend on the adoption of standardized 
reporting guidelines, such as the Interventional Radiology Reporting Standards and Checklist for Artificial 
Intelligence Research Evaluation (iCARE) checklist, to ensure future research is reproducible and 
trustworthy [19, 63].

Conclusions
AI is no longer a futuristic concept, but an active force poised to revolutionize the interventional 
management of liver disease. By extracting sub-visual radiomic features and processing complex datasets, 
AI provides a measurable advantage over routine qualitative methods in predicting TACE response, non-
invasively assessing PHT, and forecasting surgical outcomes. However, the transition from “code to 
bedside” requires the IR community to lead efforts in data standardization and methodological rigor. AI will 
not replace the interventionalist but will instead create an “AI-augmented” paradigm, where clinicians are 
empowered by precision tools to deliver safer, personalized, and more effective care for patients with liver 
disease.
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