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Abstract

Interventional radiology (IR) is an ideal domain for artificial intelligence (Al) due to its data-intensive
nature. This review provides a targeted guide for clinicians on Al applications in liver interventions,
specifically focusing on hepatocellular carcinoma and portal hypertension. Key findings from recent
literature demonstrate that AI models achieve high accuracy in predicting the response to transarterial
chemoembolization and in non-invasively estimating the hepatic venous pressure gradient. Furthermore,
emerging deep learning architectures, such as Swin Transformers, are outperforming traditional mRECIST
criteria in longitudinal treatment monitoring. Despite these technical successes, the transition from “code
to bedside” is hindered by limited external validation and the “black box” nature of complex algorithms. We
conclude that the future of IR lies in the “Al-augmented” interventional radiologist paradigm, in which Al
serves as a precision tool for patient selection and procedural safety rather than as a replacement for
clinical judgment.
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Introduction

Liver cancer is a global health challenge, with hepatocellular carcinoma (HCC) being its most common form,
and its management is a cornerstone of modern interventional radiology (IR) practice [1, 2]. Similarly,
portal hypertension (PHT), a major sequela of chronic liver disease, often requires complex, image-guided
interventions, such as the placement of a transjugular intrahepatic portosystemic shunt (TIPS) [3-5]. The
treatment of these conditions has been revolutionized by a growing arsenal of minimally invasive
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procedures, including transarterial chemoembolization (TACE), radioembolization (TARE), thermal
ablation, and portal vein embolization (PVE) [6-10].

The modern management of liver disease now generates an overwhelming amount of disparate data,
from advanced multimodality imaging and radiomics to clinical, laboratory, and genomic information [11].
Managing this complex data to make personalized treatment decisions presents a significant challenge.
Artificial intelligence (Al) has emerged as a powerful tool to meet this challenge, and the field of IR is
exceptionally well-suited for its application [12]. Unlike other interventional specialties, IR is an inherently
data-rich field where entire image-guided procedures are recorded in a standardized digital format,
creating an ideal ecosystem for Al-powered innovation [13]. This positions interventional radiologists not
just as consumers of Al technology, but as potential leaders in developing groundbreaking tools for the
entire interventional community [13].

In routine practice, interventionalists rely primarily on qualitative visual assessments of imaging and
static staging systems, such as the Barcelona Clinic Liver Cancer (BCLC) criteria, to guide therapeutic
decisions [14]. However, these conventional methods often fail to account for the complex biological micro-
heterogeneity of liver tumors or the highly variable hemodynamics of PHT [15]. This leads to a “one-size-
fits-all” approach in which, for example, up to 40% of patients may not achieve the predicted response to
TACE or may develop unforeseen complications, such as overt hepatic encephalopathy (OHE) after TIPS
placement [16-18]. Al offers a transformative solution to these shortcomings by extracting sub-visual
“radiomic” features and processing multidimensional datasets that exceed human cognitive capacity,
enabling a shift from generalized protocols to truly personalized medicine [15].

The path to clinical integration is not without obstacles. Advanced deep learning (DL) models require
vast amounts of high-quality data, yet IR datasets are often smaller and less standardized than those in
diagnostic radiology, influenced by operator variability, diverse patient conditions, and specific procedural
contexts [19]. Furthermore, a lack of formal training in Al among clinicians can create a barrier to
understanding, trusting, and effectively participating in the development and deployment of these powerful
new tools [19, 20]. This gap is underscored by the fact that while the total number of FDA-cleared Al
algorithms has surged to over 1,250, the share specifically dedicated to interventional procedures remains
minimal, highlighting the specialty’s continuous unmet need for a clear roadmap from “code to bedside”
[21].

The objective of this review is to offer a comprehensive guide for practicing interventional radiologists,
bridging the gap between foundational Al concepts and their real-world clinical applications in the
management of liver disease. We will first review a concise primer on essential Al terminology,
frameworks, and life cycles. The core of the manuscript will then survey the current and emerging
applications of Al in the management of HCC and PHT. Finally, we will discuss overarching challenges and
outline the future of the field, guided by the research priorities established by major international IR
societies [21, 22].

An IR-focused primer on Al fundamentals

To critically evaluate and integrate Al into clinical practice, a foundational understanding of its core
concepts is essential [20]. Al is a broad, umbrella term for computer-based systems that perform tasks
requiring human-like intelligence, such as pattern recognition and problem-solving [11, 23]. Within this
field, machine learning (ML) is a key subset where algorithms are not explicitly programmed but instead
learn complex, non-linear relationships directly from data [11, 20]. DL is a further specialization of ML that
uses advanced architectures, including artificial neural networks (ANNs) with many layers, to automatically
extract and learn features from complex data (e.g., medical images) with minimal human intervention [11,
20, 24] (Figure 1).
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Figure 1. The foundational hierarchy and examples of artificial intelligence (Al), machine learning, deep learning, and

generative Al.

Core architectures and clinical models

The way a model learns is defined by its training data. In supervised learning, the most common approach
in medicine, the model is trained on a dataset where inputs are labeled with the correct outputs (e.g., CT
images labeled with the presence or absence of PHT) [11, 20]. In contrast, unsupervised learning uses
unlabeled data, and the model’s task is to find hidden patterns or relationships on its own [20]. There are
two types of DL architecture particularly relevant to the interventional management of liver disease.

¢ Convolutional neural networks (CNNs): For years, CNNs have been the workhorse of medical
imaging [11, 25]. Inspired by the human visual cortex, they are exceptionally good at processing grid-
like data, such as images, to perform tasks including the classification and segmentation of liver

tumors [23, 25-27].

e Transformers: Originally developed for natural language processing (for example, the models behind
ChatGPT), Transformers are now achieving state-of-the-art results in medical imaging [19, 28].
Architectures such as the Swin Transformer hierarchically capture both global and local features,
making them highly effective for analyzing high-resolution, 3D medical images (e.g., CT and MRI
scans) for tasks such as prognostic modeling in HCC [28-32].

Specific DL models, categorized by their interventional task—such as ProgSwin-UNETR for monitoring
TACE response or the aHVPG Model for non-invasive pressure estimation—are detailed in Table 1.

Table 1. Example deep learning models and their interventional relevance.

Model name Primary architecture/Type Core clinical task Relevant IR procedure/Application
ProgSwin-UNETR Swin Transformer/DL Longitudinal prognosis stratification Monitoring HCC response after
TACE

aHVPG Model AutoML/CNN Non-invasive prediction of HYPG PHT diagnosis; TIPS candidacy
(pressure gradient)

Swin-UNETR CNN/Transformer Hybrid 3D segmentation of tumors and Y-90 dosimetry planning; ablation
organs at risk simulation

Neuro-Vascular Real-Time Al System Real-time safety monitoring (detects  Visceral or neuro-embolization

Assist migrating embolic agents)
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Table 1. Example deep learning models and their interventional relevance. (continued)

Model name Primary architecture/Type Core clinical task Relevant IR procedure/Application

ChatGPT (GPT-4) Large Language Model Statistical analysis and data Accelerating clinical research and
(LLM) interpretation protocol design

K-Net/MobileViT  CNN/Transformer Hybrid High-accuracy segmentation and Nodule/Lesion triage and feature
(Dual-Stage) classification analysis

IR: interventional radiology; DL: deep learning; HCC: hepatocellular carcinoma; TACE: transarterial chemoembolization; ML:
machine learning; CNN: convolutional neural network; HVPG: hepatic venous pressure gradient; PHT: portal hypertension;
TIPS: transjugular intrahepatic portosystemic shunt; Al: artificial intelligence.

Radiomics: extracting data from images

A key process enabling Al in radiology is radiomics, which involves the high-throughput extraction of a
large number of quantitative features from medical images [3, 13]. This process converts images into
mineable data, capturing characteristics of tumor shape, intensity, and texture that are often imperceptible
to the human eye [24, 25]. This is particularly well-suited for characterizing the heterogeneity of HCC from
CT and MRI scans [24]. These radiomic features can then be fed into ML models to build tools that predict
diagnosis, treatment response, or prognosis [1, 13, 24].

Classifying Al systems in IR

To help clinicians better understand and evaluate different Al tools, several classification frameworks have
been proposed. One pragmatic approach categorizes Al systems based on their complexity and
interpretability, distinguishing between simple, fully explainable models and complex, non-interpretable
black-box models that require more scrutiny [20]. More recently, specific frameworks were developed to
score the level of technological integration for robotic and navigation systems [33, 34]. These include the
Levels of Autonomy in Surgical Robotics (LASR) scale, which rates a system’s ability to act independently,
and the novel Levels of Integration of Advanced Imaging and Al (LIAI?) scale, which assesses how deeply Al
is embedded into the procedural workflow [33, 35]. As will be discussed, a systematic review of currently
available systems in IR found that most remain at a low level on both of these scales [33] (Table 2).

Table 2. Levels of autonomy (LASR) and Al integration (LIAF) classification scales.

Scale Purpose Range Core concept at the highest level

LASR Classifies the robot’s degree of 0 (no autonomy) to 5 Full autonomy: The system performs the entire

(autonomy)  independence from human control (full autonomy) procedure based on predefined objectives

without human intervention.

LIAI? Classifies the sophistication and 1 (guided assistance)  Full autonomous navigation: The system fully

(integration)  depth of integration of Al and to 5 (full autonomous integrates advanced imaging and Al to
advanced imaging within the navigation) independently perform and navigate the
workflow intervention.

Al: artificial intelligence; LASR: Levels of Autonomy in Surgical Robotics; LIAI*: Levels of Integration of Advanced Imaging and
Al
The Al project lifecycle: from data to deployment

The process of building and implementing an Al model follows a rigorous, multi-stage lifecycle (Table 3).
For interventional radiologists, understanding this pipeline—from initial data acquisition to final
deployment—is essential for interpreting research and ensuring clinical relevance.

Table 3. The Al project lifecycle: from data to clinical deployment.

Stage Key steps Activities IR relevance and goal
Conception & Data Define Identify a clear clinical question (e.g., The goal is to obtain sufficient, high-quality data
problem predicting TACE response) despite scarcity challenges in IR

Acquisition Gather multimodal data, including
imaging, labs, and clinical records

Preprocessing & Labeling Assign a “ground truth” to the data (e.g., Clinician expertise is required to perform
Curation manual tumor segmentation or accurate labeling and to ensure features reflect
classifying patient outcome meaningful pathology
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Table 3. The Al project lifecycle: from data to clinical deployment. (continued)

Stage Key steps Activities IR relevance and goal
Feature Transform images into quantitative data
extraction (e.g., radiomic features from HCC
texture)
Validation & Split data Separate the dataset into training, This stage establishes rigor: models must prove
Testing validation, and untouched testing sets =~ accuracy on unseen patients to be considered
External Test the final model on data from a trustworthy for clinical decision-making
validation different center to prove generalizability
Mitigate Ensure the model performs well on new
overfitting data and does not fail due to over-
memorization
Deployment & Evaluation Quantify performance using clinical The goal is to achieve genuine clinical benefit
Integration metrics such as AUC, sensitivity, and by overcoming practical barriers and securing
specificity clinician trust before routine use
Workflow Ensure the tool fits seamlessly into the
integration IR suite and minimizes disruption to

existing protocols

Al: artificial intelligence; TACE: transarterial chemoembolization; IR: interventional radiology; HCC: hepatocellular carcinoma;
AUC: Area Under the Curve.

Problem definition and data acquisition

The life of an Al model begins with defining a clinically relevant problem (e.g., predicting TACE non-
response) and identifying the necessary data inputs. In IR, this involves synthesizing multimodal data,
including imaging, laboratory values, and clinical records, which is critical given IR’s inherent multimodal
nature [11]. The goal is to develop instruments for image segmentation, simulation, registration, and
multimodality image fusion [21]. Given that IR datasets are often limited, acquiring high-quality, ethically
sourced data is the primary logistical hurdle [19, 36].

Data preprocessing and curation

Once acquired, raw data must be preprocessed. This crucial step includes image registration, normalization,
and labeling. For supervised models, labeling is the labor-intensive process of assigning a ground truth to
the input data (e.g., manually segmenting a tumor or labeling a patient as a one-hot encoding responder)
[11]. This labeling often requires the expertise of interventional radiologists [37]. Preprocessing also
involves feature extraction, transforming images into quantitative radiomics data. Radiomic features
capture characteristics of tumor shape, intensity, and texture that are often imperceptible to the human eye,
particularly in HCC [1].

Model training, validation, and testing

The available dataset is split into three distinct sets to ensure robust evaluation. The training set is used to
adjust the model’s internal parameters (weights) iteratively. The validation set is used during training to
fine-tune model hyperparameters and prevent overfitting (when the model memorizes the training data
but fails to generalize). The testing set is a portion of the original data kept entirely separate and used only
once, at the end, to assess final real-world performance. Crucially, modern high-quality research also
requires external validation—testing the model on data collected from a different institution or population
to confirm generalizability. Studies that fail to perform external validation risk a significant drop in
accuracy in clinical practice, a phenomenon known as overfitting, in which a model performs well on its
training data but fails on new, unseen data.

Performance evaluation and clinical deployment

Model performance is quantified using key metrics relevant to clinical risk, such as the Area Under the
Curve (AUC), accuracy, sensitivity, and specificity. However, the process does not end with high metrics.
The final stage is deployment—the envisioned pathway from a lab algorithm to routine clinical use. This
requires mitigating ethical biases and ensuring the Al tool seamlessly integrates into existing workflows,
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minimizing disruption to the IR suite [37]. Deployment is the ultimate safeguard for determining whether
the Al tool can provide a genuine clinical benefit.

Al applications in the interventional management of liver disease

Al demonstrates significant potential across the full spectrum of interventional liver disease management.
Current research and early clinical applications can be organized by the primary clinical problems they aim

to solve: managing HCC, assessing and treating PHT, and optimizing patients for surgical resection
(Table 4).

Table 4. Al applications in liver interventions: from routine shortcomings to Al solutions.

Phase Clinical Conventional method Al methodology Al advantage Reference(s)
application
Pre- Predicting TACE Visual CT/MRI & BCLC Multimodal models using AUROC > 0.85. [6, 28, 37,
procedural response staging. High inter-observer radiomics, DL, and clinical  Improves patient 38]
variability; fails to capture data (ALBI, BCLC, AFP). selection and avoids
sub-visual tumor futile procedures.
heterogeneity.
Non-invasive Invasive HVPG Radiomics and DL models  Non-invasively [1, 4, 53]
PHT measurement. Procedural  (e.g., aHVPG) are estimate HVPG to
assessment risk and requirement for analyzing CT features of stratify risk and
highly specialized the liver and spleen. guide TIPS
expertise. candidacy.
Predicting post-  Clinical scores (MELD, Radiomics, ANNs, and Accurately forecast  [3, 4]
TIPS Child-Pugh). Limited various ML models. the risk of OHE for
complications predictive power for post- counseling.
TIPS OHE.
Predicting PVE  2D/3D CT volumetry. Multimodal models using Forecast FLR [7]
success Volume does not always Statistical Shape Models to  hypertrophy to
equal function; difficult to quantify 3D liver anatomy.  optimize surgical
predict actual hypertrophy planning.
kinetics.
Intra- Treatment Standard anatomical DL models to predict Optimize probe [24, 39-41]
procedural simulation landmarks. Fails to account ablation zones and simulate placement and
for heat-sink effects or Y-90 radioembolization increase quantitative
perfusion-based dosimetry. accuracy of
boundaries. dosimetry.
Image quality Conventional imaging DLR for dose reduction; DL  Lower radiation [19, 24, 47]
improvement filters. High radiation dose  to reduce metal artifacts or  dose; improve
or poor visualization due to  generate synthetic DSA. visualization and
artifacts. safety during
procedures.
Post- Longitudinal mRECIST criteria. Does not DL (Transformers) using More accurate [28]
procedural monitoring of account for dynamic multi-time-point MRI data to prognostic
HCC metabolic changes or track tumor changes. stratification than
internal necrosis patterns. diameter-based
criteria.
Detecting tumor Manual surveillance review. ML, radiomics, and CNNs.  Automated and early [24, 46]
recurrence Potential for human error in detection of LTP
identifying subtle early after ablation.
progression.

Al: artificial intelligence; TACE: transarterial chemoembolization; BCLC: Barcelona Clinic Liver Cancer; DL: deep learning; ALBI:
albumin-bilirubin; AFP: alpha-fetoprotein; AUROC: area under the receiver operating characteristic curve; PHT: portal
hypertension; HVPG: hepatic venous pressure gradient; TIPS: transjugular intrahepatic portosystemic shunt; MELD: model for
end-stage liver disease; OHE: overt hepatic encephalopathy; ANNs: artificial neural networks; ML: machine learning; FLR:
future liver remnant; Y-90: Yttrium-90; DLR: DL reconstruction; DSA: digital subtraction angiography; HCC: hepatocellular
carcinoma; mRECIST: Modified Response Evaluation Criteria in Solid Tumors; CNNs: convolutional neural networks; LTP: local
tumor progression.

Hepatocellular carcinoma

As a primary focus of interventional oncology, HCC has become a key use case for Al development, with a
particular emphasis on predicting patient response to locoregional therapies [21].
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Pre-procedural patient selection for TACE

TACE is a cornerstone therapy for intermediate-stage HCC, but patient response is highly variable [6, 37].
Consequently, the most studied application of Al in interventional oncology is the development of models to
predict which patients will benefit from TACE before the procedure is performed [24, 37]. Systematic
reviews and meta-analyses have confirmed that these Al models demonstrate strong predictive
performance. One meta-analysis of 11 studies found that Al models achieved high pooled area under the
receiver operating characteristic (ROC) curve (AUROC) values of 0.89 on internal validation and 0.81 on
external validation, confirming their robustness [38].

A consistent theme is that multimodal models that integrate different data types yield the best results.
Systematic reviews involving 23 studies with 4,486 patients have found that models combining clinical
variables [including albumin-bilirubin (ALBI) grade, BCLC stage, and alpha-fetoprotein (AFP) level] with
radiologic features (including tumor diameter, distribution, and peritumoral arterial enhancement) achieve
higher predictive performance than models using clinical or imaging features alone [6, 37]. However, a
recent meta-analysis added nuance, finding no statistically significant performance difference between
advanced DL models and traditional handcrafted radiomics (HCR) models, nor between models with and
without added clinical data [38]. The authors suggested that Al models may be able to implicitly learn
clinical information directly from imaging data [38].

Longitudinal monitoring of treatment response

Al is also advancing beyond static, single-time-point assessments to perform longitudinal analysis that
tracks tumor changes over time. A state-of-the-art study by Yao et al. [28] developed a DL model, ProgSwin-
UNETR, to predict the long-term prognosis of HCC patients by analyzing a series of arterial-phase MRI scans
taken at three different time points: before treatment, after the first TACE, and after the second TACE. By
learning from these dynamic changes, the model stratified patients into four distinct risk groups with high
accuracy (AUC of 0.92) and significantly outperformed both traditional radiomics models and the standard

Modified Response Evaluation Criteria in Solid Tumors (mRECIST) criteria in predicting patient survival
[28].

Intra- and post-procedural applications for HCC
Beyond TACE, Al tools are being developed for other liver-directed therapies.

e Al for Y-90 dosimetry and planning: Segmentation of organs at risk and tumors is a critical, labor-
intensive step in Y-90 TARE dosimetry planning. CNNs have been successfully developed for the
automated segmentation of lungs, liver, and tumors on Tc-99m MAA SPECT/CT images, drastically
reducing operator time [39]. Al is also being used to improve the technical accuracy of the dosimetry
itself. A DL framework that employs CNNs for scatter correction and absorbed dose-rate estimation
was developed to mitigate the impact of poor image quality from bremsstrahlung SPECT. This model
was found to outperform the conventional Monte Carlo (MC) dosimetry method in virtual patient
studies by 66% in Normalized Mean Absolute Error (NMAE), offering faster computation and higher
accuracy [40]. Crucially, advanced Al tools that incorporate multimodal data are necessary because
standard anatomical segmentation is insufficient for Y-90 TARE planning. Using contrast-enhanced
Cone-Beam CT (CBCT) to define liver perfusion territories (LPTs), one study found that using
standard anatomical landmarks instead of perfusion-based boundaries could lead to dosimetric
errors of up to 21 Gy in the left liver lobe, highlighting the critical value of Al-assisted image
registration and segmentation of functional territories [41].

e Treatment simulation and image quality: For thermal ablation, Al-driven treatment simulation
models can predict the size and shape of an ablation zone before the procedure, accounting for real-
world factors such as the heat-sink effect from nearby blood vessels [24, 42, 43]. For
radioembolization, Al can be used to automate the segmentation of the liver and tumors on planning
scans for dosimetry and to simulate the biodistribution of Y-90 microspheres [24, 39-41, 44]. For
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follow-up, Al models are demonstrating high accuracy (AUC up to 0.99) in detecting local tumor
progression (LTP) on surveillance CT scans after thermal ablation [24, 45, 46].

e Image quality improvement: Al enhances the quality of the images that guide interventions. DL
reconstruction (DLR) algorithms reduce image noise and enable significant reductions in radiation
dose during CT-guided procedures while maintaining image quality [24, 47]. Another application
involves DL models that generate high-quality, artifact-free synthetic digital subtraction angiography
(DSA) images for abdominal angiography, overcoming motion-related misregistration and
potentially reducing radiation exposure [19, 24, 47].

¢ Dynamic video analysis and real-time Al: While most current Al applications in IR rely on static pre-
procedural imaging, significant progress involves the analysis of dynamic, video-based data
generated during fluoroscopy and angiography. Unlike static CT or MRI, procedural video requires Al
models capable of temporal reasoning—understanding how structures or tools move over time.
Methodologies developed in adjacent fields, such as real-time polyp detection in colonoscopy,
provide a valuable roadmap for IR [48-50]. In gastroenterology, DL models (e.g., CNNs combined
with temporal filtering) have reached high levels of accuracy in identifying lesions on live video
feeds, reducing “miss rates” significantly. Transferring these approaches to IR could enable real-time
“computer-aided detection” of subtle findings, such as the early detection of liquid embolic migration
or the automated tracking of catheter tips during complex navigation [51, 52]. Such tools could shift
the role of Al from a pre-procedural planning aid to an active, “over-the-shoulder” safety monitor
during live interventions.

Portal hypertension

Al is developing powerful, non-invasive tools to assist in diagnosing and managing PHT and its
complications.

e Non-invasive diagnosis and risk stratification: The gold standard for assessing the severity of PHT is
the invasive measurement of the hepatic venous pressure gradient (HVPG) [4, 53]. To overcome this,
an automated Al model (aHVPG) was developed that uses radiomics from CT scans of the liver and
spleen to accurately estimate the HVPG, significantly outperforming conventional non-invasive tools
[53]. Another multimodal model combined clinical data (portal vein diameter, Child-Pugh score)
with radiomic and DL features extracted from the non-tumorous liver parenchyma to predict the
presence of PHT [1].

e Predicting post-TIPS complications: For patients undergoing TIPS, a major concern is the risk of
post-procedural OHE. Several Al approaches—including CT-based radiomics, ANNs, and other ML
models—have been successfully used to predict the risk of post-TIPS OHE, with models consistently
achieving high AUROCs greater than 0.80 [3, 4].

Surgical optimization (pre-hepatectomy IR)

Al is also being applied to PVE, a critical IR procedure performed to induce hypertrophy of the future liver
remnant (FLR) before a major hepatectomy for colorectal liver metastases [7]. The success of the
subsequent surgery depends on achieving adequate liver growth. A recent state-of-the-art, multicenter
study developed an ML model to predict post-PVE outcomes, including the final FLR percentage [7]. This
study is a benchmark for advanced Al methodology, as it integrated multimodal data (clinical, laboratory,
and radiomic features) and introduced a novel Statistical Shape Model to mathematically quantify the 3D
shape of the liver as a predictive feature. Critically, the study validated its model on an external dataset
from a separate institution, demonstrating strong generalizability and addressing a common limitation in
Al research [7].
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Biliary interventions and advanced fatty liver

Beyond oncology and PHT, Al is increasingly relevant in the management of biliary obstructive diseases and
metabolic liver conditions. In biliary interventions, DL models, such as CNNs, are being developed to assist
in the automated mapping of the biliary tree from magnetic resonance cholangiopancreatography (MRCP)
[54]. These tools can accurately detect common bile duct stones (90.5%) and distinguish between benign
and malignant biliary strictures with high sensitivity (82.4%), potentially guiding complex interventions,
such as percutaneous transhepatic biliary drainage (PTBD), by reducing the reliance on extensive ductal
opacification on fluoroscopy [54, 55]. Furthermore, novel augmented reality (AR) navigation systems are
emerging that automatically register the biliary anatomy to 3D CT coordinates, allowing for precise real-
time tracking of interventional instrument tips during biliary procedures [56].

In the context of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD), Al-powered
ultrasound and CT tools now facilitate the non-invasive quantification of liver fat and fibrosis [57]. DL
algorithms applied to non-enhanced CT scans can automatically measure liver attenuation and convert it to
a fat fraction, achieving high correlation with manual measurements and traditional MRI-PDFF (r = 0.92)
[58]. This capability is critical for IR when assessing procedural safety; for instance, quantifying the degree
of steatosis or fibrosis in the non-tumorous liver is essential for predicting the risk of post-embolization
liver failure or evaluating the quality of the FLR after PVE [57, 58].

Key challenges on the path to clinical integration

The integration of Al into the interventional management of liver disease is rapidly moving from a
theoretical possibility to a clinical reality. The evidence demonstrates that Al is poised to enhance every
phase of the IR workflow. In the pre-procedural phase, Al models are showing robust performance in
predicting treatment outcomes for core liver-directed procedures, including TACE and TIPS [3, 6]. Intra-
procedurally, advanced imaging techniques are reducing radiation dose and improving image quality [24,
46]. Post-procedurally, Al automates the labor-intensive tasks of surveillance and follow-up, offering a level
of consistency that can surpass human performance [59]. However, the path from a promising algorithm to
a fully integrated and trusted clinical tool is paved with significant challenges (Table 5).

Table 5. Key challenges and future directions for Al in liver interventions.

Category Key points Description Reference(s)
Challenges  Data-related Scarcity of large, high-quality, and standardized IR datasets. [19, 23, 36, 59,
hurdles 60]

“Garbage in, garbage out”: poor image quality leads to Al failure.
Ethical issues surrounding data privacy, ownership, and security.

Methodological The “black box” problem and the need for explainable Al (XAl). [1, 20, 23, 28, 37,
barriers Lack of external validation, leading to overfitting. 38,61, 62]
High heterogeneity across studies makes comparing results difficult.

C_Iinical & ethical Risk of amplifying existing societal biases (algorithmic bias). [19, 35, 37, 60]
dilemmas Unclear accountability for Al-related adverse events.

Difficulty with practical workflow integration.

Risk of “futile technologization” (expensive tech with marginal benefit).

Future A guided research The SIR Foundation has prioritized HCC as a key use case. [21]

directions agenda . . . . .
9 Immediate research needs include tools for segmentation, simulation,

and navigation.

A top priority is creating shared data commons to accelerate research.

Emerging Shift toward powerful, adaptable foundation models. [19, 20, 64]

technologies .
Use of generative Al (e.g., ChatGPT) as a research tool.

Creation of “synthetic cohorts” to serve as control arms in clinical trials.

Ensuring quality & Widespread adoption of standardized reporting guidelines, such as the [19, 63]
trust iCARE checklist, is essential to ensure future research is reproducible,
transparent, and trustworthy.

Al: artificial intelligence; IR: interventional radiology; HCC: hepatocellular carcinoma; iCARE: Interventional Radiology Reporting
Standards and Checklist for Artificial Intelligence Research Evaluation.
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Data-related hurdles

The performance of any Al model is fundamentally dependent on the data used to train it. A primary
challenge in IR is the relative scarcity of large, high-quality, and standardized datasets compared to
diagnostic radiology, which can limit the development of robust models [19, 36]. This is compounded by the
“garbage in, garbage out” principle; Al models can fail if the input data is of poor quality, as demonstrated in
studies where data heterogeneity and quality issues are a primary concern [36].

Furthermore, the use of patient data raises profound ethical questions about data privacy, ownership,
and security [23, 60]. A proposed framework suggests treating de-identified patient data for secondary
research as a “public good” that can be shared to advance medicine but not sold for profit, a concept that
requires broad consensus and strong governance to implement [60].

Methodological and technical barriers

A common concern among clinicians is the “black box” nature of many DL models, where the reasoning
behind a prediction is not easily understood [20, 23]. This lack of interpretability can be a major barrier to
clinical trust. Consequently, a key area of modern Al research is explainable Al (XAI), which aims to open
this black box and provide insights into the model’s decision-making process [61]. Techniques such as
Grad-CAM++, which generate heatmaps to visualize the image regions an Al is focusing on, are a practical
example of XAl in action [28].

The field is also challenged by a lack of methodological rigor. Systematic reviews and meta-analyses
have found significant heterogeneity across studies, with different research groups using varied algorithms
and datasets, making it difficult to compare results directly [38, 62]. Many studies are single-center and lack
external validation, raising questions about their generalizability and sometimes leading to overfitting,
where a model performs well on its training data but fails on new, unseen data [1, 37].

Clinical and ethical dilemmas
Beyond the data and methods, several ethical and practical issues must be addressed.

¢ Algorithmic bias: Al models trained on historical healthcare data can inadvertently learn and amplify
existing societal biases related to race, socioeconomic status, or geography, potentially worsening
healthcare disparities [19, 60]. For example, an Al trained on data where disadvantaged patients
have worse outcomes might learn to recommend against treating them [60].

» Accountability for errors: A critical question is who is responsible when an Al-related adverse event
occurs. A reasonable framework approaches this similarly to medical device litigation, where fault
could lie with the developer for a flawed product or with the clinician for its improper use [60].

o Workflow integration: Many Al tools developed in a research setting are difficult to integrate into
complex clinical workflows. Cumbersome requirements, such as the need for manual tumor
segmentation before a model can be used, are a major barrier to practical adoption [37].

» Futile technologization: Finally, there is a risk of developing expensive, sophisticated technologies
that provide only marginal clinical benefit, a phenomenon termed “futile technologization” [35].
Experts caution that innovation must be rigorously evaluated to ensure it is driven by clinical
relevance and improves patient outcomes, rather than by commercial pressure [35].

Discussion

The findings of this narrative review underscore a pivotal shift in the interventional management of liver
disease. Traditional clinical decision-making relies on a diverse yet often subjective set of data modalities
that are frequently prone to inter-observer variability and high cognitive load [23]. The integration of Al,
particularly DL and radiomics, represents a paradigm shift from qualitative visual assessments to a
quantitative, data-driven approach that extracts diagnostic and prognostic information often imperceptible
to the human eye [15, 24].
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In the management of HCC, Al models have demonstrated an ability to stratify patient risk with an
accuracy that matches or, in some cases, surpasses that of expert radiologists, particularly in predicting
response to locoregional therapies, such as TACE [6, 38]. Similarly, the development of non-invasive tools
for PHT assessment addresses a critical clinical need by providing support for early intervention and
personalized treatment strategies without the risks associated with invasive HVPG measurement [4, 53].
Beyond oncology and cirrhosis, the emerging use of Al in biliary obstructive diseases and automated fatty
liver quantification further broadens the scope of the “Al-augmented” interventionalist, allowing for more
precise procedural guidance and comprehensive risk assessment [54, 55].

The clinical impact of these tools lies in their potential to standardize diagnostic quality and optimize
outcomes [13]. While currently most advanced in diagnostic and post-processing tasks, interventional
applications are beginning to mature, offering measurable gains in catheter navigation, probe placement,
and ablation success [33, 52].

Challenges and future directions

Despite the transformative potential of Al in hepatology and IR, several significant hurdles remain that
impede its widespread clinical adoption (Table 5).

¢ Methodological and data barriers: Most current Al research is retrospective and limited by small,
single-center datasets, which raises concerns regarding the generalizability and robustness of
models across different clinical environments [19, 36].

« Interpretability and trust: The “black box” nature of complex DL architectures erodes clinician trust,
as the rationale behind Al-generated recommendations is often opaque [20, 61].

e Workflow integration: Practical implementation faces logistical hurdles, including the need for
institutional support, interoperability with existing electronic health records, and clinician training
[22, 37].

e Ethical and regulatory issues: Algorithmic bias, data privacy concerns, and the lack of clear legal
liability frameworks for Al-driven errors remain critical issues needing resolution [19, 60].

Moving forward, the field must be guided by the research priorities established by the SIR Foundation
Research Consensus Panel, which emphasized the creation of “shared data commons” and prioritized HCC
as the primary use case for personalized, Al-driven algorithms [21]. Future research must prioritize
multicenter, prospective validation and the development of XAl to improve model transparency [28, 63].
Technological paradigms are already shifting toward foundation models and generative Al (e.g., ChatGPT)
to accelerate clinical research and statistical analysis [20, 64]. Furthermore, innovative concepts such as
“synthetic cohorts” of virtual patients may soon mitigate the difficulties of clinical trial recruitment [19].
Ultimately, the successful and responsible integration of Al will depend on the adoption of standardized
reporting guidelines, such as the Interventional Radiology Reporting Standards and Checklist for Artificial
Intelligence Research Evaluation (iCARE) checklist, to ensure future research is reproducible and
trustworthy [19, 63].

Conclusions

Al is no longer a futuristic concept, but an active force poised to revolutionize the interventional
management of liver disease. By extracting sub-visual radiomic features and processing complex datasets,
Al provides a measurable advantage over routine qualitative methods in predicting TACE response, non-
invasively assessing PHT, and forecasting surgical outcomes. However, the transition from “code to
bedside” requires the IR community to lead efforts in data standardization and methodological rigor. Al will
not replace the interventionalist but will instead create an “Al-augmented” paradigm, where clinicians are
empowered by precision tools to deliver safer, personalized, and more effective care for patients with liver
disease.
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