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Abstract
Neurodegenerative diseases, including Alzheimer’s, Parkinson’s, Huntington’s, and Amyotrophic Lateral 
Sclerosis, are characterized by multifactorial pathologies that extend beyond neuronal loss to include 
neuroinflammation, oxidative stress, mitochondrial dysfunction, and glial dysregulation. Despite extensive 
research, disease-modifying therapies remain elusive, hindered by late diagnosis, limited availability of 
specific biomarkers, and the persistent dominance of reductionist, single-target strategies. This 
comprehensive and informative review provides a critical synthesis of integrated neuroprotective 
strategies, with particular focus on glial mechanisms and biomarker-guided interventions. Therapeutic 
emphasis is placed on coordinated mechanisms targeting both neurons and non-neuronal cells, such as 
astrocytes, microglia, and oligodendrocytes. Emerging strategies are reported to include modulation of 
synaptic plasticity and neurotransmission, delivery of neurotrophic factors, activation of intrinsic 
cytoprotective pathways (e.g., Nrf2 signaling), restoration of proteostasis, and induction of regeneration via 
cellular reprogramming. Glial cells are discussed as therapeutic targets involved in inflammation, 
metabolism, myelination, and neuronal survival. Advances in predictive, preventive, personalized, and 
participatory (P4) medicine, supported by genomics, multi-omics, imaging, and real-world data, are 
presented as accelerating biomarker discovery and enabling earlier and more precise stage-specific 
interventions. Future success in combating neurodegeneration will depend on integrated approaches that 
combine protective, supportive, and regenerative strategies, appropriate for disease stage and patient 
profile. By reframing neuroprotection as a systemic, multicellular endeavor, this review highlights the 
potential to not only extend life expectancy, but also preserve meaningful quality of life in individuals 
affected by neurodegenerative diseases.
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Introduction—Studying neurodegeneration in humans: challenges and 
opportunities
The neuroprotection paradigm

Neuroprotection remains a formidable challenge, as every central nervous system (CNS) insult, be it stroke, 
trauma, or neurodegenerative disease, activates multiple, overlapping injury pathways. This mechanistic 
complexity, coupled with the translational gap between animal models and clinical practice, has repeatedly 
undermined single-target strategies and continues to limit the development of effective therapies.

Factors such as age, genetic background, and pre-existing health conditions can significantly influence 
not only an individual’s response to CNS injury but also the efficacy of neuroprotective interventions. 
Despite promising outcomes in animal models, only a few neuroprotective treatments have gained approval 
for clinical use in humans. This underscores the urgent need for improved research strategies, careful 
selection of drugs, and suitably designed clinical trials. Moreover, the absence of reliable biomarkers to 
assess neuroprotection in humans further complicates progress in this field.

While every strategy has an intrinsic and often unavoidable limitations, at present we should keep 
focusing on the overall realization of our commitment to neuroprotection by: i) further enhancing the 
natural repair mechanisms and regenerative capacity of the CNS; ii) intervening earlier in the course of CNS 
injury to limit damage and improve outcomes; iii) adopting simultaneous application of a range of selective 
agents instead of single-targeted strategies, or by the provision of a single multi-target agent; iv) providing 
comprehensive supportive care crucial for neuroprotection beyond pharmacological interventions.
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Under this perspective, as reported in a systematic analysis for the Global Burden of Disease Study 
2021 [1, 2], the age-standardized rates of deaths per 100,000 individuals attributed to 37 unique conditions 
affecting the nervous system that now include neurodevelopmental disorders, late-life neurodegeneration, 
and emergent conditions such as cognitive impairment following coronavirus disease 2019 (COVID-19), has 
decreased by 33.6% from 1990 to 2021; age-standardized rates of Disability-Adjusted Life Years (DALYs) 
attributed to these conditions has decreased by 27%. Nevertheless, the medical community and the society 
continue to face a staggering burden: In 2021, an estimated 3.4 billion people, representing 43.1% of the 
global population, were living with a neurological condition, which accounted for 11.1 million deaths and 
443 million DALYs, making neurological diseases the leading cause of disability worldwide.

This review provides a comprehensive overview of major neurological disorders, moving beyond a 
neuron-centric view to incorporate the critical part that glial cells play in disease mechanisms and 
treatment. Additionally, we discuss emerging biomarkers, current challenges, and future directions in 
research. The structure of the text progresses from an analysis of specific diseases and their common 
pathways to a discussion of rationally designed neuroprotective strategies, aiming to bridge scientific 
knowledge and clinical applications and, hopefully, contribute to better patient outcomes in the future.

Neurological diseases characterized by neuronal loss
Parkinson’s disease

Parkinson’s disease (PD) is primarily characterized by the progressive loss of dopaminergic neurons in the 
substantia nigra pars compacta and subsequent depletion of dopamine in the nigrostriatal pathway. 
Clinically, PD presents with hallmark motor symptoms such as bradykinesia, resting tremor, rigidity, and 
postural instability. However, non-motor symptoms, ranging from cognitive impairment, mood disorders, 
sleep disturbances, autonomic dysfunction, to anosmia, are increasingly recognized as integral to the 
disease and often precede motor onset by years. This complex symptomatology reflects the widespread and 
multisystem nature of PD pathology, which extends far beyond the basal ganglia to involve cortical, limbic, 
and peripheral autonomic structures [3, 4].

Despite decades of research, PD remains incurable, and currently approved treatments are largely 
symptomatic. Dopaminergic therapies such as levodopa, dopamine agonists, and monoamine oxidase B 
(MAO-B) inhibitors provide meaningful relief, particularly during the early stages of the disease, but their 
efficacy wanes over time [5]. Long-term use is frequently associated with debilitating motor complications, 
such as dyskinesias and fluctuations in symptom control [6]. Importantly, none of the available treatments 
address the underlying neurodegeneration, and disease progression continues unabated.

This lack of disease-modifying therapies highlights an urgent and unmet need for effective 
neuroprotective strategies capable of halting or slowing the loss of vulnerable neuronal populations. 
Multiple molecular mechanisms have been implicated in PD pathogenesis, including mitochondrial 
dysfunction, oxidative stress, impaired protein degradation pathways (ubiquitin-proteasome and 
autophagy-lysosomal systems), excitotoxicity, calcium dysregulation, neuroinflammation, and abnormal 
alpha-synuclein aggregation. These processes do not act in isolation but instead converge and amplify one 
another in a complex interplay that underlies neuronal vulnerability and death. Parkinsonism can be linked 
to genetics in only a small subset of patients (for a recent review and examples of such conditions, see [7]). 
The synaptic accumulation and misfolding of alpha-synuclein is considered a pathological hallmark and 
propagates in a prion-like fashion through interconnected neural circuits [8, 9]. Except for a few isolated 
cases, no definitive factors capable of triggering the pathological process have been identified. Potential 
suspects, including environmental or industrial toxins, heavy metals, and illicit drugs, have been 
considered, but none have been conclusively implicated.

Neuroinflammation plays a key role in the progression of PD. Activated microglia release reactive 
oxygen and nitrogen species, pro-inflammatory cytokines, and other neurotoxic mediators that exacerbate 
oxidative stress and mitochondrial damage. In parallel, astrocytes and peripheral immune cells contribute 
to a sustained pro-inflammatory environment within the CNS. These chronic inflammatory responses are 
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now understood not simply as bystanders but as active drivers of neurodegeneration. Targeting 
dysfunctional glial responses, restoring microglial homeostasis, and modulating peripheral immune 
infiltration represent promising avenues for intervention. Similarly, enhancing endogenous mechanisms of 
neuronal resilience, such as antioxidant defenses, trophic support, and mitochondrial biogenesis, may 
provide additional protection against ongoing insult [10–12].

Mitochondrial impairment also occupies a central role in PD. Dysfunction of mitochondrial complex I in 
the electron transport chain has been observed in post-mortem PD brains and in several experimental 
models. This dysfunction compromises cellular energy metabolism, increases oxidative stress, and triggers 
apoptotic cascades. In genetic forms of PD, mutations in genes such as PINK1, PARKIN, DJ-1, and LRRK2 
further highlight the vulnerability of mitochondrial and proteostatic systems, offering potential therapeutic 
targets [7, 13, 14].

However, attempts to develop neuroprotective treatments have so far met with limited success. Several 
promising compounds have failed in clinical trials due to a range of challenges, including inadequate 
disease models, late intervention timing, insufficient biomarker validation, and difficulty in distinguishing 
symptomatic from neuroprotective effects. Furthermore, the clinical heterogeneity of PD, along with the 
absence of definitive diagnostic biomarkers in early stages, complicates patient stratification and endpoint 
definition in trials (see details in [15]).

Given these challenges, there is a growing consensus around the need for multimodal approaches to 
neuroprotection in PD. Rather than targeting isolated mechanisms, future therapies must consider the 
convergence of mitochondrial stress, protein aggregation, and neuroinflammation. Combination therapies, 
or single agents with pleiotropic actions, are increasingly being explored to interrupt the pathological 
cascade at multiple levels. In parallel, efforts are underway to identify early biomarkers, including those 
based on cerebrospinal fluid (CSF), peripheral blood, imaging modalities, and multi-omic signatures, to 
enable earlier intervention, before extensive neuronal loss has occurred.

In sum, PD exemplifies the critical importance of neuroprotection in chronic neurodegenerative 
disorders. Its multifactorial pathophysiology, progressive trajectory, and lack of disease-modifying 
treatments underscore the need for early, multi-targeted, and personalized approaches. Advancing 
neuroprotective therapies in PD will not only impact millions of patients worldwide but also yield valuable 
insights applicable to other disorders marked by neuronal loss. This review will comprehensively explore 
these multifaceted pathological features from the perspective of neuroprotection.

Alzheimer’s disease

Like Parkinson’s, Alzheimer’s disease (AD) is marked by progressive neuronal degeneration, but with 
distinct molecular signatures and therapeutic challenges. AD is the most common cause of dementia 
worldwide and a leading contributor to disability and dependency among the elderly. It is clinically defined 
by progressive cognitive decline, particularly in memory, language, executive function, and orientation, 
which in time culminates in significant loss of independence and diminished quality of life. Behavioral and 
neuropsychiatric symptoms, including apathy, agitation, depression, and hallucinations, often accompany 
the cognitive decline and contribute significantly to disease burden [2].

Neuropathologically, AD is characterized by extracellular accumulation of amyloid-β (Aβ) plaques and 
intracellular neurofibrillary tangles composed of hyperphosphorylated tau protein. These hallmark lesions 
appear years, if not decades, before symptom onset and are associated with synaptic dysfunction, 
progressive neuronal loss, and widespread cortical and hippocampal atrophy. However, AD pathology 
extends beyond amyloid and tau, encompassing a multifaceted array of pathophysiological mechanisms, 
including chronic neuroinflammation, oxidative stress, mitochondrial dysfunction, impaired proteostasis 
(the homeostasis of protein folding, stability, and degradation), calcium dysregulation, excitotoxicity, and 
breakdown of the blood-brain barrier (BBB) [16, 17].
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Despite substantial advances in our understanding of these mechanisms, effective therapeutic options 
remain extremely limited. Current approved treatments, including acetylcholinesterase inhibitors and the 
N-methyl-D-aspartate receptor (NMDAR) antagonist memantine, offer only modest symptomatic relief 
without altering disease progression. Even recent anti-amyloid immunotherapies, while targeting one of 
the core pathologies of AD, have shown limited clinical benefit and raised concerns regarding safety, 
efficacy, and applicability across the disease spectrum. These limitations reinforce the urgent need for 
neuroprotective strategies that can preserve neuronal integrity, delay progression, and extend the 
functional lifespan of patients [18, 19].

A recent metallomic study has found significantly lower cortical lithium (Li) in mild cognitive 
impairment and AD with selective sequestration of Li within amyloid plaques, implying an early 
disturbance of endogenous Li homeostasis in vulnerable cortex while serum levels remain unchanged; this 
shift is supported across cohorts and fractionation analyses that show reduced Li in non-plaque 
parenchyma and correlations with memory performance [20]. In mouse models, dietary Li deficiency 
accelerates Aβ deposition, tau phosphorylation, microglial reactivity, synaptic and myelin loss, and memory 
decline; single-nucleus RNA-seq indicates broad, cell-type–specific transcriptomic changes that overlap 
human AD signatures, and several of these effects are partly mediated by increased GSK3β activity, as 
pharmacologic GSK3β inhibition reverses Li-deficiency phenotypes. As a replacement strategy, lithium 
orotate (LiO), reported to bind Aβ less avidly than lithium carbonate, raised parenchymal Li, reduced Aβ 
and phospho-tau, and improved synaptic/myelin markers and behavior at physiological Li levels in AD 
mice, though these salt-specific advantages and translational implications remain preclinical [21–23]. 
Despite mechanistic interest and some preliminary signals, clinical trials in AD have not provided evidence 
of therapeutic benefit from lithium, and its toxicity profile limits its practical use in patients. Taken 
together, disturbed Li homeostasis may contribute to early AD biology (potentially via GSK3β/β-catenin 
signaling and microglial/myelin vulnerability), but lithium is not an established AD therapy; rigorous 
human validation of brain target engagement, salt selection, and risk-benefit evaluation at clinically 
practical exposures is still required before efficacy claims are warranted.

The need for neuroprotection in AD is underscored by the disease’s long preclinical phase, during 
which silent pathological processes accumulate before any measurable symptoms emerge. This extended 
prodromal window offers a critical opportunity for early intervention, provided reliable biomarkers and 
predictive tools are in place. Neurodegeneration in AD follows a characteristic trajectory, starting in the 
entorhinal cortex and hippocampus and gradually spreading to the associative neocortex. The degeneration 
of neurons in the ventral tegmental area, accompanied by reduced dopamine release and impaired 
connectivity in target regions, is recognized as a key feature of the early stages of AD, preceding even the 
formation of Aβ plaques. These alterations contribute to cognitive decline as well as to neuropsychiatric 
symptoms such as apathy and depression, which are frequently observed in patients [24–26]. Targeting 
early degenerative changes, such as synaptic loss, axonal transport disruption, mitochondrial compromise, 
and glial dysfunction, may prove more effective than attempting to reverse advanced neuronal death [27, 
28].

Chronic inflammation, mediated by microglia and astroglia, is now recognized as a central driver of 
neuronal damage in AD. Notably, several risk genes associated with AD, including TREM2, CD33, CD36 and 
CR1, encode immune-related proteins, suggesting that immune dysfunction is not merely secondary but 
causally linked to disease pathogenesis. There is also increasing interest in neuroimmune modulation, with 
therapeutic strategies aiming to rebalance microglial activation states, prevent astrocyte-induced 
neurotoxicity, and limit peripheral immune cell infiltration. Additionally, efforts to enhance intrinsic 
neuronal protective mechanisms, through upregulation of neurotrophic factors, restoration of calcium 
homeostasis, or stabilization of synaptic plasticity, offer further promise [29, 30].

Neurons rely heavily on mitochondrial energy production, and in AD, early defects in mitochondrial 
dynamics, respiratory chain activity, and calcium buffering impair synaptic function and render neurons 
more vulnerable to stress. These deficits are compounded by oxidative damage, reduced antioxidant 
capacity, and accumulation of oxidized lipids, proteins, and nucleic acids. Protein misfolding and failure of 
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clearance systems, including the autophagy-lysosome and ubiquitin-proteasome pathways, further 
compromise the cellular environment and lead to toxic intracellular accumulations [31, 32].

Despite the intricate interplay of pathological mechanisms in AD, therapeutic efforts have long 
prioritized Aβ targeting as a singular strategy. However, the consistent clinical failures of these reductionist 
approaches have prompted a paradigm shift toward multi-target interventions designed to concurrently 
modulate multiple facets of neurodegeneration. Therapy approaches include: i) novel small molecules and 
biologics with designed polypharmacology; ii) strategically repurposed drugs with established pleiotropic 
benefits; and iii) optimized lifestyle interventions. Particularly promising are agents that integrate 
complementary mechanisms, simultaneously mitigating neuroinflammation, counteracting oxidative stress, 
and preserving synaptic integrity, to address the disease’s multifactorial nature [33, 34].

One major challenge in advancing neuroprotective therapies in AD lies in trial design. Patient 
heterogeneity, long disease course, and variability in clinical presentation complicate recruitment, 
stratification, and outcome measurement. Furthermore, distinguishing genuine neuroprotective effects 
from symptomatic improvement requires the use of robust, disease-relevant biomarkers and long-term 
longitudinal studies. Nevertheless, advances in neuroimaging, fluid and blood-based biomarkers, and multi-
omic profiling are beginning to enable more accurate staging, prognosis, and therapeutic targeting [35].

In conclusion, AD exemplifies the complexity and unmet clinical needs of neurodegenerative disorders. 
The progressive neuronal loss, limited treatment efficacy, and enormous social and economic burden 
underscore the critical importance of early, targeted, and multi-mechanistic neuroprotective approaches. A 
shift in focus from end-stage pathology to early intervention and neuronal preservation will be essential to 
transform the management of AD and improve outcomes for millions of affected individuals. Later, we will 
provide an in-depth analysis of these complex mechanisms, always from the perspective of 
neuroprotection.

Huntington’s disease

Huntington’s disease (HD) is a rare, inherited neurodegenerative disorder with a known genetic etiology: 
the production of mutant huntingtin (mHTT) protein. Onset typically occurs in mid-adulthood, presenting a 
complex clinical picture. The motor syndrome encompasses involuntary choreiform movements, dystonia, 
and impaired coordination, often evolving into bradykinesia. This is accompanied by a range of psychiatric 
symptoms, including depression, irritability, and apathy, as well as progressive cognitive deficits in 
attention, executive function, and memory. Collectively, these symptoms lead to a progressive decline in the 
ability to perform daily activities and a significant deterioration in quality of life [36, 37].

The expansion of CAG trinucleotide repeats in the HTT gene results in the production of an mHTT 
protein containing an expanded polyglutamine sequence. Misfolded mHTT forms intracellular aggregates, 
disrupts cellular homeostasis, and triggers widespread neuronal dysfunction. The striatum, particularly the 
medium spiny neurons of the caudate nucleus and putamen, is the earliest and most severely affected brain 
region. As the disease progresses, cortical atrophy and white matter loss become more pronounced. Beyond 
the toxic gain-of-function effects of mHTT, HD pathogenesis involves a range of interconnected 
mechanisms, including mitochondrial dysfunction, transcriptional dysregulation, impaired autophagy, 
proteostasis failure, excitotoxicity, oxidative stress, and chronic neuroinflammation [38–43].

Despite a detailed understanding of the genetic basis of HD, effective therapeutic options remain 
extremely limited. Currently approved treatments such as tetrabenazine and deutetrabenazine target only 
chorea and offer symptomatic relief without altering disease progression. Antisense oligonucleotides and 
gene-silencing approaches that directly target HTT expression are under investigation, yet have shown 
mixed results in clinical trials, with concerns about efficacy, safety, and delivery. These limitations highlight 
the need for broader neuroprotective strategies that can delay neurodegeneration, support neuronal 
survival, and preserve motor and cognitive function [44–46].
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The need for neuroprotection in HD is particularly urgent given the protracted presymptomatic phase, 
during which subtle cognitive and psychiatric changes may precede overt motor symptoms by years. This 
long prodromal window presents a crucial opportunity for early therapeutic intervention, especially in 
individuals with a known genetic diagnosis. Neurodegeneration in HD follows a relatively stereotyped 
progression, beginning in the striatum and extending to other cortical and subcortical structures. Early 
changes include synaptic loss, dendritic spine retraction, mitochondrial fragmentation, and alterations in 
gene expression, all of which contribute to neuronal dysfunction before irreversible cell death [39, 41, 43].

Chronic neuroinflammation is increasingly recognized as a significant contributor to HD pathogenesis. 
Microglia in HD adopt a reactive, pro-inflammatory state, releasing cytokines, reactive oxygen species, and 
complement proteins that exacerbate neuronal injury. Astrocytes also exhibit dysfunctional phenotypes, 
including impaired potassium and glutamate buffering, which further compromise neuronal health. 
Notably, mHTT expression in glial cells may independently drive inflammatory responses and metabolic 
disturbances. Peripheral immune system alterations, including increased cytokine levels and immune cell 
infiltration, suggest a systemic component to the inflammatory process in HD [47–49].

Mitochondrial dysfunction is another hallmark of HD. mHTT impairs mitochondrial biogenesis, 
disrupts calcium handling, and promotes fission over fusion, leading to fragmented and inefficient 
mitochondria. These alterations reduce ATP production, increase oxidative damage, and render neurons 
more vulnerable to metabolic stress. In parallel, defective autophagic clearance and ubiquitin-proteasome 
system dysfunction result in the accumulation of toxic protein species and damaged organelles, 
perpetuating cellular toxicity [50–52].

Although much of the therapeutic focus in HD has centered on reducing mHTT levels, single-target 
approaches have yielded limited success, prompting interest in multi-modal strategies. These include i) 
small molecules with antioxidant, anti-inflammatory, or neurotrophic properties, ii) lifestyle interventions 
such as exercise and diet and iii) cell-based therapies aimed at restoring lost neuronal populations or 
modulating the disease environment. Neuroprotective compounds that enhance mitochondrial function, 
reduce oxidative stress, and support proteostasis are also being explored in preclinical and early clinical 
studies [39, 53, 54].

A major barrier to progress in HD treatment development is the lack of robust biomarkers for disease 
progression and therapeutic response. However, recent advances in neuroimaging, body fluid biomarkers 
(such as neurofilament light chain—NfL), and digital phenotyping are beginning to enable more precise 
tracking of disease dynamics and individualized treatment approaches. Additionally, gene editing and RNA-
targeting technologies offer hope for transformative therapies, though challenges remain in ensuring 
specificity, safety, and long-term efficacy [55–58].

In conclusion, HD illustrates the devastating consequences of single-gene mutations triggering a 
cascade of pathological events. The convergence of synaptic dysfunction, mitochondrial failure, 
neuroinflammation, and impaired protein clearance underscores the complexity of the disease and the need 
for early, multi-mechanistic neuroprotective interventions. As research advances, integrating genetic, 
molecular, and clinical insights will be critical to developing effective therapies that not only alleviate 
symptoms, but also modify the course of the disease and improve the lives of patients and their families.

Amyotrophic Lateral Sclerosis

Amyotrophic Lateral Sclerosis (ALS) is a devastating multisystem neurodegenerative disease characterized 
by the degeneration of both upper (cortical) and lower (brainstem and spinal) motor neurons, leading to 
progressive voluntary muscle weakness and paralysis. Despite its rarity, ALS represents the most prevalent 
and studied motor neuron disease, with clinical onset and progression varying significantly across 
individuals. Symptoms typically begin with muscle weakness, cramping, or dysarthria, and progressively 
extend to involve swallowing and respiratory muscles. Both familial (fALS, 5–10% of cases) and sporadic 
(sALS) forms show similar clinical and pathological features, with overlapping cognitive and behavioral 
changes, particularly frontotemporal-like symptoms, as well as progressive bulbar and limb motor 
dysfunction.
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Pathologically, ALS is characterized by motor neuron degeneration and a constellation of co-occurring 
molecular abnormalities, including excitotoxicity, mitochondrial dysfunction, oxidative stress, necrosis, 
altered proteostasis, impaired cytoskeletal trafficking, DNA damage, and dysfunctional RNA metabolism. 
Neuroinflammation may have an important role, sustained by aberrant crosstalk between neurons and glial 
cells. Microglia, astrocytes, and infiltrating macrophages remain chronically activated and secrete 
neurotoxic factors, while dysfunctional oligodendrocytes and Schwann cells fail to uphold myelin and 
metabolic support. This glial dysregulation perpetuates motor neuron death, contributing to the rapid and 
irreversible nature of the disease [59, 60].

Potential triggers range from environmental and industrial toxins [61] to the confluence of factors such 
as strenuous physical exercise and intermittent, high-intensity sound [62]. Associations with certain 
occupations (farmers, truck drivers, airline pilots/cabin crew, professional soccer players) have been 
proposed, though none are particularly strong [63–68]. Epidemiological studies are limited by small sample 
sizes and uncertain outcomes. It has recently been noted [69] that researching ALS faces formidable 
challenges, and overcoming these barriers will be essential for developing truly effective strategies for 
prevention and treatment.

Genetically, over 40 risk genes have been associated with ALS, with key mutations including those in 
C9ORF72, SOD1, TARDBP, and FUS. These mutations result in toxic gain- and loss-of-function effects, which 
impair essential cellular processes. Still, the initial molecular trigger, or “primum movens”, remains 
undefined, and it is likely that no single causative mechanism can account for the clinical and molecular 
heterogeneity observed in ALS patients. This multifactorial etiology supports the view of ALS as a “point of 
no return” disease, where the failure of therapies to halt disease progression reflects the deep complexity of 
its biology [59, 60].

Epidemiologically, the burden of ALS is rising worldwide. According to the Global Burden of Disease 
Study 2021, ALS prevalence has increased by nearly 68% between 1990 and 2021, with incidence rising by 
74.5% and associated DALYs by 105.5% [1]. Bayesian models forecast that although prevalence may 
plateau or modestly decline by 2040, mortality and overall disease burden will continue to rise, driven 
largely by population aging, especially in high-income countries [1] and increased environmental toxic 
compounds. This rising global impact underlines the urgency for better treatments and earlier diagnosis.

From a therapeutic standpoint, current interventions are limited. Riluzole remains the main approved 
therapy for ALS, despite yielding only modest survival gains through partial attenuation of glutamatergic 
excitotoxicity [70–73]. Edaravone (RADICAVA®), a free-radical scavenger, was approved in several 
countries after showing efficacy in a specific subgroup of early-stage ALS patients [74, 75]. More recently, 
tofersen (QALSODY®), an antisense oligonucleotide targeting mutant SOD1, has shown potential in reducing 
NfL levels and slowing functional decline, though concerns remain regarding inflammatory side effects and 
the failure of initial phase III trials [76–78].

Emerging candidates such as PrimeC, a combination of ciprofloxacin and celecoxib, have shown 
promising results in slowing progression and improving survival in phase II trials [79, 80]. Similarly, 
dazucorilant, a selective glucocorticoid receptor modulator, was granted “fast track” status after showing 
improved survival despite missing its primary endpoint [81]. Another promising molecule, Usnoflast 
(previously ZYIL1), targets the NLRP3 inflammasome, a key component of neuroinflammation, and has 
been successfully tested in phase IIa trials for ALS [82, 83]. The compound is currently being evaluated in 
phase IIb trials.

Altogether, ALS exemplifies the profound complexity of neurodegenerative diseases characterized by 
neuronal loss. It underscores the limitations of single-targeted treatments and highlights the urgent need 
for multi-target approaches, search for clinical markers to enable early diagnosis, and robust clinical trial 
designs. Continued advances in omics technologies and biomarker discovery are essential to understand 
the intricate pathophysiology of ALS and to develop more effective and personalized neuroprotective 
strategies.
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Stroke

Stroke, particularly ischemic stroke, is a leading cause of adult disability and death worldwide, 
characterized by the sudden interruption of cerebral blood flow and the subsequent cascade of energy 
failure, excitotoxicity, oxidative stress, and neuronal death [84–87]. Unlike chronic neurodegenerative 
diseases such as PD, AD, HD or ALS, which involve slowly progressive and multifactorial neuronal loss, 
stroke represents an acute insult where the timing of intervention is critical. In this context, 
neuroprotection primarily depends on the rapid restoration of cerebral perfusion, typically through 
thrombolytic or endovascular therapies. Time-sensitive management is therefore the most effective 
strategy to limit irreversible damage and preserve neuronal integrity [84]. Given these distinct 
pathophysiological dynamics and therapeutic priorities, stroke will not be discussed further in this review, 
which focuses instead on chronic neurological diseases characterized by progressive neuronal loss, 
complex molecular interactions, and the need for sustained neuroprotective strategies.

Emerging trends in neuroprotective drug discovery

While reshaping our way to connect basic science to clinical needs, we are currently witnessing new trends 
in drug discovery, sustained by several recent achievements obtained, for instance, in the field of 
“predictive-preventive-personalized-participatory (P4) medicine”. These trends have profound roots dating 
back to antiquity and the philosopher and skillful physician of the classical Greek period, Hippocrates, 
sometimes considered the father of Western medicine. In his “Hippocratic Corpus”, compiled centuries 
before the advent of precision medicine, Hippocrates had set up the foundations of what we would now call 
a personalized approach to healthcare, having done so even in the absence of the sophisticated diagnostic 
tools that are available today. Hippocrates was indeed the first to emphasize concepts such as individual 
patient needs, the role of lifestyle, and the body’s natural functions and development. Maintaining that 
diseases are a combination of environmental factors, diet, and living habits, Hippocrates appears to have 
anticipated the four principles of P4 medicine [88], which seeks to individualize care according to each 
patient’s distinctive biological and sociocultural profile.

P4 medicine strives to improve treatment effectiveness and clinical outcomes by a more holistic 
approach that carefully considers individual differences that contrasts with more traditional “one size fits 
all therapy”. The ongoing transformation is already evident; in 2020, 42% of the clinical trials in the USA 
were biomarker-based, compared to only 5% in 2005. The accelerated drug approval introduced by the 
FDA in 2024 was probably made possible by growing acceptance of precision medicine and genetic 
screening in targeted therapies, for instance, those for non-small-cell lung cancer and pancreatic 
adenocarcinoma, by approving zenocutuzumab-zbco (brand name Bizengri®, https://www.fda.gov/drugs/
resources-information-approved-drugs/fda-grants-accelerated-approval-zenocutuzumab-zbco-non-small-
cell-lung-cancer-and-pancreatic), and for transthyretin-mediated amyloidosis causing cardiomyopathy and 
heart failure, by approving acoramidis (brand names Attruby and Beyonttra, https://www.fda.gov/drugs/
news-events-human-drugs/fda-approves-drug-heart-disorder-caused-transthyretin-mediated-
amyloidosis).

The P4 medicine paradigm continues to demonstrate its value across chronic diseases, even as 
attention increasingly shifts toward rare disorders. Common conditions such as diabetes, obesity, mental 
health disorders, and metabolic dysfunctions are poised to reap the greatest rewards from this new era in 
drug discovery. At the same time, rapid advances in genomics, electronic health records, digital health 
technologies, and data-driven research are leading a parallel surge in neurotherapeutics, an area with many 
urgent but unmet needs.

Neuroscientists can use genomic and proteomic data to identify individuals at risk long before the 
appearance of symptoms. Research continues for identifying molecular triggers and environmental factors 
that could predict the risk of developing diseases such as AD, PD, HD, ALS, Multiple Sclerosis (MS), epilepsy 
and others. Using predictive data, P4 medicine [88] can guide lifestyle changes and tailor treatments to each 
patient’s genetic background, environment, medication response, and disease course. These personalized 
strategies aim to prevent or slow neurological decline, improve symptom control, reduce adverse effects, 

https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-zenocutuzumab-zbco-non-small-cell-lung-cancer-and-pancreatic
https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-zenocutuzumab-zbco-non-small-cell-lung-cancer-and-pancreatic
https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-zenocutuzumab-zbco-non-small-cell-lung-cancer-and-pancreatic
https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-zenocutuzumab-zbco-non-small-cell-lung-cancer-and-pancreatic
https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-zenocutuzumab-zbco-non-small-cell-lung-cancer-and-pancreatic
https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-zenocutuzumab-zbco-non-small-cell-lung-cancer-and-pancreatic
https://www.fda.gov/drugs/news-events-human-drugs/fda-approves-drug-heart-disorder-caused-transthyretin-mediated-amyloidosis
https://www.fda.gov/drugs/news-events-human-drugs/fda-approves-drug-heart-disorder-caused-transthyretin-mediated-amyloidosis
https://www.fda.gov/drugs/news-events-human-drugs/fda-approves-drug-heart-disorder-caused-transthyretin-mediated-amyloidosis
https://www.fda.gov/drugs/news-events-human-drugs/fda-approves-drug-heart-disorder-caused-transthyretin-mediated-amyloidosis
https://www.fda.gov/drugs/news-events-human-drugs/fda-approves-drug-heart-disorder-caused-transthyretin-mediated-amyloidosis
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and enhance overall outcomes. Looking ahead, patients will be better informed, encouraged to provide 
feedback, and closely monitored to optimize therapeutic results.

In addition to genetic data, large studies should look at the expression of relevant genes (proteomics) 
and the molecular pathways/processes in which the gene products are involved (e.g., metabolomics, 
receptor-associated cascades, growth factor effects, kinases, and many more), thus constantly improving 
our understanding of the neuropathological mechanisms and uncovering novel targets.

The future of clinical research in neuroscience, therefore, lies in collecting real-world data and using 
them as catalysts for clinical trial design and in further development of individually-tailored treatment 
procedures.

Main mechanisms of neuronal damage
The nervous system is susceptible to diverse disruptions that impair homeostasis, whether locally or 
systemically. Below, we examine key mechanisms underlying neuronal degeneration, highlighting how they 
drive cellular damage (Figure 1). Like the entire review, this section concentrates on chronic, progressive 
diseases.

Figure 1. Schematic representation of the integrated mechanisms contributing to neuronal damage in 
neurodegenerative diseases. This diagram illustrates the main cellular and molecular mechanisms of primary neuronal 
damage in neurodegenerative conditions. Excitotoxicity: Excessive glutamate release resulting in sodium and calcium influx, 
which impairs neuronal viability. Neuroinflammation: Release of chemokines and cytokines, such as TNF-α, IL-6, and IL-1β. 
Activation of Microglia and Astrocytes: These cells can adopt phenotypes with distinct functions. Microglia M1 promotes 
inflammation and neurotoxicity, while the M2 phenotype supports tissue repair and anti-inflammatory signaling. A1 astrocytes 
show a neurotoxic profile, contributing to synaptic loss, whereas A2 astrocytes exhibit neuroprotective properties. Oxidative 
stress and redox imbalance: Accumulation of reactive oxygen species (ROS) and a decrease in antioxidant activity disrupts 
mitochondrial functions and promotes cellular damage. Vascular Dysfunction: Compromise of the blood-brain barrier integrity 
leads to impaired nutrient and oxygen supply, contributing to neuronal dysfunction. Oligodendrocytes and Myelin 
Dysfunction: Degeneration of oligodendrocytes disrupts myelin sheath integrity, leading to impaired axonal action potential 
conduction and neural integrity. Altogether, these interrelated mechanisms create a pathological environment and further 
progressive neuronal damage, forming the biological basis of neurodegenerative diseases. Cell illustrations were generated with 
the assistance of Sora, an AI-based image generation platform.

Excitotoxicity and glutamatergic overload

Excitotoxicity was one of the first mechanisms of neuronal damage that was identified. The word, allegedly 
coined by John Olney, refers to neuronal injury caused by excessive excitatory stimulation, particularly 
prolonged cellular depolarization [89]. This process commonly involves the main excitatory 
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neurotransmitter of the nervous system, glutamate. This overstimulation results in excessive sodium and 
calcium influx, causing persistent neuronal depolarization [90]. Excitotoxicity may occur when, for instance, 
extracellular glutamate accumulates due to impaired uptake by astrocytes or excessive synaptic release. 
The glutamate-induced persistent depolarization affects mitochondrial membrane polarization, impairing 
mitochondrial function and energy metabolism (see section Oxidative stress and redox imbalance in the 
CNS, and [91]).

Three primary ionotropic glutamate, NMDA, alpha-amino-3-hydroxy-5-methyl-4-isooxazole-
propionate (AMPA), and kainate receptors [92], can trigger excitotoxic cascades. While overstimulation of 
any of these receptors may contribute to excitotoxicity, excessive calcium influx via NMDA and AMPA 
receptors is particularly harmful. Ion influx activates enzymes such as endonucleases, phospholipases, and 
proteases, damaging both the plasma and mitochondrial membranes of the neuron. Excitotoxic mechanisms 
are implicated in various conditions, including ALS, AD, PD, epilepsy, and traumatic brain or spinal cord 
injury [91]. Other triggers include hypoglycemia that may affect brain energy metabolism [93].

β-methylamino-L-alanine (BMAA), a naturally occurring weak agonist of glutamate receptors, has been 
implicated in age-related neurological disorders, though its exact role remains debated due to insufficient 
evidence [94, 95]. Similarly, dietary intake of β-N-oxalyl-amino-L-alanine (BOAA), a plant-derived 
excitotoxin and potent agonist of ionotropic glutamate receptors, induces lathyrism, a neurodegenerative 
disease characterized by irreversible motor dysfunction due to spinal cord damage [96]. In ALS, the 
dysfunctional uptake of glutamate by astrocytic transporters contributes to excitotoxicity at least in a 
subset of ALS patients [97], however, simple inhibition of glutamate transport failed to produce an ALS-like 
condition in animals (see section The classical view: microglia as engines of inflammation for more details).

Experimental models frequently employ the natural neurotoxin kainic acid to trigger excitotoxic 
neuronal death, providing a well-established paradigm for studying neurodegeneration [98].

Notably, emerging evidence suggests that excitotoxicity may synergize with immune dysregulation, 
exacerbating neuronal vulnerability and accelerating disease progression [99].

Although present at appreciable levels in the brain, the role of aspartate remains poorly understood 
[100]. This amino acid is a potent excitatory agent acting primarily through NMDA receptors [101]. 
However, the risk of aspartate-induced excitotoxicity has not been fully evaluated. A critical gap is that 
aspartate does not appear to have been tested directly at metabotropic G protein-coupled glutamate 
receptors (mGluRs) [100]. Because activation of mGluRs is known to confer neuroprotection by limiting 
glutamate-induced excitotoxicity [102–107], aspartate’s apparent failure to activate these receptors would 
leave this protective mechanism unengaged. This absence of mGluR-mediated buffering could make 
aspartate a particularly potent excitotoxin, underscoring the need for further investigation.

Although excitotoxicity results from exacerbated excitatory transmission, it is important not to forget 
the relevance of GABAergic transmission and how GABAergic system modulators may affect neuronal 
plasticity and/or protect against cognitive decline after brain insults. Recent reviews have highlighted this 
issue [108, 109].

Neuroinflammation and immune dysregulation in the CNS

Inflammation is a protective immune response to infection or tissue injury. However, in the CNS, this 
process, termed neuroinflammation, differs fundamentally from peripheral inflammation. Unlike classical 
inflammation (characterized by heat, redness, and pain), neuroinflammation primarily involves the release 
of pro-inflammatory mediators (e.g., cytokines, chemokines, and ROS) by resident immune cells, 
particularly microglia, the CNS’s innate immune effectors [110, 111]. Notably, astrocytes also contribute by 
amplifying inflammatory signaling under pathological conditions.

In certain neurological disorders, T lymphocytes can infiltrate the CNS by crossing the BBB, where they 
exacerbate neuroinflammatory responses through pro-inflammatory cytokine release and glial cell 
activation. While this mechanism is most prominent in MS, growing evidence implicates T cell involvement 
in other neurodegenerative diseases as well [112].
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Chronic neuroinflammation arises when persistent stimuli, including genetic mutations, pathological 
protein aggregates (e.g., Aβ and α-synuclein), traumatic injury, or neurotoxic exposure, convert an 
otherwise transient, protective inflammatory response into a sustained and maladaptive state. This chronic 
activation impairs neuronal homeostasis, worsens synaptic dysfunction, and ultimately accelerates 
neurodegenerative processes [113–116].

Microglial and astrocytic involvement in neuroinflammation

Glial cells, i.e., microglia, astrocytes, and oligodendrocytes, are essential for supporting and modulating 
neuronal function [117, 118]. Recent single-cell transcriptomic studies have revealed unexpected 
heterogeneity within glial populations [119]. Though traditionally viewed as immune-privileged, the CNS 
possesses its own immune defenses, with microglia acting as the primary immune effectors and 
constituting the predominant “immune” population in the CNS [120]. These cells constantly monitor the 
local environment and initiate inflammatory signaling in response to disruption [121]. Depending on 
stimuli, microglia can adopt distinct phenotypes: the M1 pro-inflammatory state (induced by 
lipopolysaccharide and characterized by production of cytokines such as TNF-α, IL-1β, and IL-6) and the M2 
anti-inflammatory state (induced by IL-4 or IL-13, promoting repair) [122, 123]. While this M1/M2 
classification oversimplifies microglial diversity, it remains useful for distinguishing functional profiles 
[124, 125]. More recent transcriptomic studies have described additional phenotypes, including disease-
associated microglia (DAM), which are characterized by downregulated homeostatic genes and upregulated 
inflammatory ones [126]. The possibility of M2 microglia has led to new therapeutic opportunities that are 
covered in another section of this review.

Astrocytes are star-shaped glial cells critical for neuronal support, ionic homeostasis, neuroprotection, 
and synaptic regulation [127]. Despite being discovered alongside neurons, astrocytes remained 
understudied for decades. More recent advances have revealed their essential roles in CNS development, 
physiology, and disease pathogenesis [128]. These cells display intricate arborization patterns and form 
extensive gap junction-coupled networks that dynamically regulate synaptic activity, pH balance, and 
cerebral microcirculation. Astrocytes are fundamental components of both the BBB and the glymphatic 
waste clearance system [129–131]. In pathological conditions, astrocytes undergo significant molecular and 
morphological remodeling, adopting either a detrimental A1 (neurotoxic) or beneficial A2 
(neuroprotective) reactive state that, respectively, drives injury progression or promotes tissue repair 
[132, 133]. The identification of these dichotomous astrocytic states, particularly the reparative A2 
phenotype, has revealed promising therapeutic targets that will be examined in later sections of this 
review.

Astrocytes participate in glutamate clearance, converting it into glutamine, and play a key role in 
antioxidant defense. Under stress conditions, astrocytes may release toxic factors that amplify neuronal 
damage [134]. Dysfunctional microglia may fail to eliminate pathogens or apoptotic cells and may trigger 
maladaptive inflammatory responses [135, 136].

Oligodendrocytes and myelin dysfunction

Oligodendrocytes, which make up about 20% of brain cells, produce and maintain myelin. Their 
dysfunction has been implicated in AD, where notable myelin alterations are reported [137]. Additionally, 
oligodendrocytes contribute to regulation of neuroinflammation, neuronal metabolic support, and stress 
response. They are active participants in neurodegenerative pathophysiology, as evidenced by 
transcriptomic studies [138].

Oligodendrocytes and Schwann cells ensure proper signal conduction by maintaining myelin and 
providing trophic support to axons. Damage or degeneration of oligodendrocytes is directly implicated in 
MS [139], and in ALS and frontotemporal dementia [140].
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Interplay between glial and neuronal cells: pathogenic feedback loops

A critical initiating event in neuroinflammation is the detection of homeostatic disturbances within the CNS. 
This recognition is mediated by specialized molecular sensors, including pattern recognition receptors 
(PRRs), activated by damage-associated molecular pattern (DAMP) molecules produced upon exogenous 
threats and endogenous danger signals, subsequently activating inflammatory cascades [141, 142].

While glial dysfunction in neurodegenerative diseases (AD, PD, HD) primarily emerges as a 
consequence of underlying pathology, it nevertheless creates a self-perpetuating cycle that exacerbates 
disease progression. Through sustained release of pro-inflammatory mediators and impaired 
neuroprotective functions, dysfunctional glia amplify neuronal damage, effectively accelerating the 
neurodegenerative process [143].

Glial cells and neurons maintain dynamic communication via signaling molecules (cytokines, 
neurotransmitters, ROS, NO, glutamate) and extracellular vesicles containing proteins, mRNA, and miRNA. 
These vesicles can propagate toxic proteins like tau and β-amyloid and influence the progression of 
neurodegenerative diseases [144, 145].

Crosstalk between astrocytes and microglia has neuroprotective potential. In PD models, suppressing 
microglia-induced conversion of astrocytes to the A1 neurotoxic phenotype preserved dopaminergic 
neurons [146]. In vitro, astrocyte-to-microglia transfer of protein aggregates improved clearance [147]. 
However, in disease states, this interaction may turn maladaptive, promoting inflammation and 
neurodegeneration.

Neuronal death in neurodegeneration occurs via multiple mechanisms: apoptosis, necroptosis, 
pyroptosis, and ferroptosis. Apoptosis involves caspase-3-mediated protein degradation without 
inflammation [148]. Necroptosis, triggered when apoptosis is impaired, involves receptor-interacting 
protein kinases (RIPK) 1 and 3, and the mixed lineage kinase domain-like protein (MLKL), resulting in 
membrane rupture and inflammatory signaling [149]. Pyroptosis, in contrast, involves caspase-1 activation 
by inflammasomes like NLRP3, leading to cytokine release and membrane permeability increase [150, 151]. 
In PD and AD, pyroptosis is associated with elevated inflammatory cytokines and Aβ-mediated 
inflammasome activation [152, 153]. Ferroptosis is increasingly recognized as a distinct mechanism of 
regulated cell death contributing to age-related neurodegenerative disorders. Its involvement adds an 
epigenetic layer to neuronal vulnerability, potentially driving the progressive neuronal loss observed in 
conditions such as AD [154, 155]. Pathways leading to cell death release DAMPs, fueling further 
neuroinflammation. Modulating glial activity and these death pathways may offer therapeutic avenues. 
Current research is focused on targeting inflammasomes, glial signaling, and regulated cell death as 
strategies to mitigate neurodegeneration [156].

Oxidative stress and redox imbalance in the CNS

Oxidative stress is a key pathological feature of neurodegenerative diseases. It arises from an imbalance 
between the production of ROS and the body’s antioxidant defenses [157]. The CNS is particularly 
vulnerable to oxidative damage due to its high oxygen consumption, abundance of polyunsaturated fatty 
acids, and relatively low levels of antioxidant enzymes [158]. Understanding how oxidative stress 
contributes to disease mechanisms is essential for developing effective neuroprotective strategies [159], 
targeting neurons and glial cells.

Molecular oxygen is vital for energy production and cellular signaling. However, its metabolism can 
generate ROS, which include both radical (e.g., superoxide O2•–, hydroxyl radical •OH) and non-radical 
species (e.g., hydrogen peroxide H2O2) [160]. Nitrogen species such as the nitric oxide radical (NO•) and the 
peroxynitrite (ONOO–) also contribute to oxidative damage [161].

ROS are mainly produced in mitochondria during aerobic respiration, especially at complexes I and III 
of the electron transport chain [162, 163]. Other sources include nicotinamide adenine dinucleotide 
phosphate (NADPH) oxidases, xanthine oxidase, peroxisomes, and enzymes associated with the 
endoplasmic reticulum [164, 165].
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Physiologically, ROS act as signaling molecules involved in proliferation, immunity, and plasticity. They 
modulate redox-sensitive pathways such as those mediated by mitogen-activated protein kinase (MAPK), 
phosphatidylinositol 3-kinase (PI3K), and some tyrosine phosphatases. For example, during infection, ROS 
activate immune cells and stimulate cytokine release [166]. Nitric oxide plays roles in blood flow regulation, 
neurotransmission, and immune responses [167]. Dysregulation of redox homeostasis leads to ROS 
accumulation, mitochondrial dysfunction, disrupted iron metabolism, and DNA damage, ultimately 
contributing to oxidative stress [168–170].

ROS can induce lipid peroxidation, particularly in the presence of iron, triggering ferroptosis, a 
regulated form of cell death [171]. Aβ oligomers exacerbate this process, producing reactive aldehydes like 
4-hydroxy-2-nonenal (HNE) that damage proteins and contribute to neurodegeneration [172]. Iron, though 
essential for mitochondrial respiration and neurotransmitter synthesis, can generate ROS when 
dysregulated. Excess iron accumulation is linked to oxidative damage in AD, PD, and other 
neurodegenerative diseases [173, 174]. Compared to other organs, the brain has reduced levels of catalase 
and glutathione peroxidase activity, impairing its ability to neutralize H2O2 and other electrophilic 
compounds [175, 176]. DNA damage caused by ROS, such as base oxidation and strand breaks, disrupts 
genomic stability. When repair mechanisms fail, neuronal apoptosis may ensue [177]. Indeed, oxidative 
DNA damage markers like 8-hydroxy-2-deoxyguanosine (8-OHdG) are elevated in AD [178–180].

This vulnerability is compounded by an age-dependent decline in endogenous antioxidant defenses, 
contributing significantly to neuronal dysfunction and neurodegenerative pathogenesis. Critical roles in 
maintaining redox are exerted by antioxidant systems, including the thioredoxin/peroxiredoxin systems 
and the nuclear erythroid related transcription factor 2 (Nrf2), which regulates the expression of 
detoxification proteins such as Kelch-like ECH-associated protein 1 (Keap1) [181].

Notably, Nrf2 plays a dual protective role by both repressing neuroinflammatory signaling and 
promoting the transcription of antioxidant genes, establishing it as a compelling therapeutic target in 
neurodegenerative disorders [182, 183]. Intriguingly, antioxidant defense mechanisms in the CNS diverge 
substantially from those in peripheral tissues such as erythrocytes, where the glutathione–NADPH system 
is well characterized and robust. In contrast, the CNS’s antioxidant architecture remains only partially 
understood, and its complexity is heightened by neuronal heterogeneity and limited regenerative capacity. 
As highlighted elsewhere [184], neurons rely heavily on astrocytes for redox balance, creating a 
compartmentalized and interdependent defense system. This cell-specific reliance introduces unique 
vulnerabilities during oxidative stress episodes. Moreover, while the glutathione system is present in 
neural cells, its relative importance compared to other detoxification strategies remains unclear. Current 
therapeutic approaches aim to modulate these pathways, including direct Nrf2 activation and glial-targeted 
interventions, although significant challenges persist in delivering antioxidant agents across the BBB and in 
validating neuroprotection markers. These limitations underscore the need for further mechanistic insights 
and innovative delivery strategies to fully harness neuroprotective potential of targeting Nrf2-mediated 
pathways.

Oxidative stress in specific neurodegenerative diseases

Although oxidative stress constitutes a unifying pathological feature among major neurodegenerative 
diseases, the molecular pathways through which it drives neuronal injury appear to be disease specific. A 
striking and still unresolved observation is that the most vulnerable neuronal populations differ markedly 
across disorders, affecting distinct brain regions such as the hippocampus in AD, the substantia nigra in PD, 
or the motor cortex and spinal cord in ALS. These differences likely reflect complex interactions among 
region-specific neuronal subtypes, glial responses, genetic predispositions, and disease-specific triggers, 
each contributing to unique patterns of redox imbalance. Deciphering these divergent mechanisms is 
essential for developing targeted, pathology-specific antioxidant therapies [185].

The defining pathological feature of PD is the selective degeneration of dopaminergic neurons in the 
substantia nigra pars compacta [4, 186]. While the precise mechanisms remain incompletely understood, 
these neurons exhibit particular vulnerability to oxidative stress due to their high basal metabolic activity, 
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autonomous pacemaking requiring intense calcium cycling, and ROS generation during dopamine 
metabolism [187]. This susceptibility is compounded by impaired redox homeostasis and multiple 
pathogenic factors: i) dysfunctional protein clearance mechanisms involving PTEN-induced kinase 1 
(PINK1), Parkin, and α-synuclein proteostasis; ii) mitochondrial impairment leading to ROS accumulation; 
and iii) environmental exposures to toxins like pesticides and heavy metals [188–190]. Together, these 
elements create a self-reinforcing cycle of oxidative damage, protein aggregation, and neuronal 
degeneration that characterizes PD progression.

In AD, oxidative stress also plays a central role promoting Aβ accumulation and tau phosphorylation 
[191] and impairing proteostasis (the homeostasis of protein folding, stability, and degradation), synaptic 
plasticity and other processes critical for learning and memory [188, 192]. Based on findings from the 
CRND8 mouse model, in which amyloid deposits are associated with neuropathological changes, it is 
conceivable that similar mechanisms, potentially involving the accumulation of metal ions such as copper, 
iron, or zinc, could also occur within amyloid plaques in human patients [193, 194].

An informative account of the causes of neuronal-death-vulnerability that can be deduced from familial 
cases of Parkinson’s and Alzheimer’s diseases has been described elsewhere [195].

HD is due to a CAG repeat expansion in the HTT gene. While huntingtin folds and functions normally, 
the mutant form exhibits aberrant folding, leading to aggregation and neuronal toxicity. The mHTT protein 
interacts improperly with other cellular proteins, disrupting normal biological functions. ROS exacerbate 
the misfolding process, promoting the accumulation of protein aggregates near neuronal axons and 
dendrites, ultimately impairing synaptic communication [196]. Mitochondrial Ca2+ handling is also 
disrupted, leading to the opening of the mitochondrial permeability transition pore (mPTP) and the release 
of cytochrome c, which triggers apoptosis. This imbalance is also associated with excessive superoxide 
production and mitochondrial DNA damage [197].

Cytoplasmic protein aggregates, a pathological feature of ALS, disrupt key cellular degradation 
mechanisms, including both the ubiquitin-proteasome system and autophagy pathways, resulting in 
catastrophic failure of protein homeostasis. Mitochondrial dysfunction resulting from accumulation of 
trans-activation response element DNA binding protein 43 (TDP-43) increases the production of ROS, 
causing oxidative stress and establishing a vicious cycle that contributes to disease progression. Thus, 
oxidative stress emerges as a central mechanism in the disease pathogenesis, interconnected with 
proteostatic and mitochondrial dysfunction [198, 199].

A detailed understanding of the distinct pathophysiological mechanisms and redox imbalances 
underlying each neurodegenerative disorder is crucial for advancing personalized therapeutic strategies, 
enabling interventions tailored to the specific cellular vulnerabilities and molecular drivers of each disease.

Vascular dysfunction and the neurovascular unit

Disruptions in cerebral perfusion, whether due to trauma, ischemia, or hemorrhage, are well-established 
drivers of acute neuronal injury. The neurovascular unit, composed of endothelial cells, pericytes, astrocytic 
end-feet, and vascular smooth muscle cells, plays a central role in regulating cerebral blood flow and 
maintaining the integrity of the BBB. These components are essential for ensuring nutrient delivery and 
shielding neural tissue from circulating toxins and inflammatory mediators [200]. Loss of BBB integrity in 
prodromal or early symptomatic phases may exacerbate neuroinflammation and accelerate neuronal loss 
[201].

However, despite this contributory role, it is not reasonable to propose direct therapeutic targeting of 
vascular dysfunction or BBB endothelial cells as a primary strategy for treating neurodegenerative 
disorders. These structures, while involved in disease progression, are not the root cause of neuronal 
degeneration and remain challenging to modulate without risking systemic side effects or impairing 
essential barrier functions. Therefore, therapeutic efforts are better directed toward neuronal and glial 
targets, which more directly govern disease onset and progression.
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Integrated mechanisms and common pathological pathways

Independent of the trigger of neurodegeneration leading to AD, PD, HD or ALS, common pathological 
themes emerge: excitotoxicity, mitochondrial dysfunction, oxidative stress, glial and vascular dysfunction, 
often interacting in complex, cascading patterns. Understanding these interconnected processes is vital for 
developing strategies to halt or reverse neurodegeneration and protect neuronal integrity in aging and 
disease.

Neuron-targeted therapies
The convergence of excitotoxicity, oxidative stress, and immune dysregulation highlights the multifactorial 
nature of neuronal damage. A key advancement in addressing these mechanisms is the shift from a neuron-
centric to a holistic view that encompasses the critical role of glial cells, a perspective that informs the 
diverse therapeutic toolkit explored in the following sections.

Targeting neurons in neurodegenerative disorders

Neurons are the principal cellular targets in most neurodegenerative diseases, and their progressive loss 
accounts for the irreversible nature of clinical decline in conditions such as AD, PD, HD, and ALS. Neuron-
focused therapeutic strategies seek to prevent degeneration, enhance survival, and restore function. 
However, these approaches face inherent challenges: Neurons have limited regenerative capacity, are 
highly susceptible to metabolic stress, and require preservation of precise synaptic connectivity for proper 
network integration.

This section presents current neuron-targeted therapeutic strategies, organized along a conceptual axis 
from extracellular modulation (e.g., receptor activation and trophic signaling) to intracellular mechanisms 
(e.g., signal transduction, transcriptional regulation and metabolic support). Particular attention is given to 
interventions that enhance synaptic plasticity, activate intrinsic neuroprotective pathways, and promote 
functional network regeneration (Figure 2).

Enhancing synaptic plasticity and network adaptation

One of the earliest consequences of neurodegeneration is the loss of synaptic strength and plasticity. 
Synaptic plasticity is a fundamental process underlying cognitive functions such as learning and memory 
[202]. Synaptic alterations are a hallmark of numerous neurological and psychiatric disorders, making the 
restoration of synaptic efficacy a central therapeutic goal [203, 204]. Enhancing plasticity can help stabilize 
circuit function, compensate for neuronal loss, and delay clinical deterioration. This subsection explores 
therapeutic strategies designed to boost synaptic adaptation, including receptor modulation, epigenetic 
tuning, and activity-based interventions.

Among pharmacological approaches, positive allosteric modulation of AMPA receptors using 
AMPAkines (e.g., aniracetam, CX516) has shown promise. AMPA receptors mediate fast excitatory 
neurotransmission, and their potentiation enhances excitatory postsynaptic potentials (EPSPs), promoting 
long-term potentiation (LTP), the cellular correlate of learning and memory [205, 206]. AMPAkines 
increase channel open time without directly activating the receptor, and may also elevate neurotrophic 
factors such as BDNF (brain-derived neurotrophic factor), contributing to neuronal survival and synaptic 
remodeling [207]. Consequently, AMPA receptor potentiation is being investigated as a therapeutic strategy 
for cognitive dysfunction in AD, schizophrenia, and depression.

NMDA receptors are likewise critical for calcium-dependent synaptic plasticity. Their activation 
permits calcium influx and initiates intracellular signaling cascades involving calmodulin kinase II 
(CaMKII), cAMP Response Element Binding Protein (CREB) and MAPK, culminating in the transcription of 
genes required for long-lasting synaptic enhancement [208]. Nonetheless, overstimulation of NMDA 
receptors can trigger excitotoxic damage, necessitating tightly controlled modulation. Therapeutic 
strategies under investigation include partial agonists (e.g., D-cycloserine) and modulators of the glycine 
co-agonist site, which may enhance plasticity while minimizing toxicity. NMDA receptor dysfunction seems 
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Figure 2. Neuron-targeted therapeutic strategies for neurodegenerative diseases. This diagram summarizes four key 
classes of neuron-directed interventions designed to counteract neurodegeneration and support functional recovery. Enhancing 
Synaptic Plasticity (top left, blue): Modulation of AMPA and NMDA receptors boosts excitatory synaptic transmission and long-
term potentiation (LTP). These strategies aim to restore synaptic strength essential for memory, learning, and network 
dynamics. Neurotrophic Factor Delivery (top right, orange): Administration of trophic molecules like BDNF and CDNF, either 
via receptor activation (e.g., TrkB) or exosome-based delivery, promotes neuronal survival, synaptic stability, and overall 
network resilience. Activating Intrinsic Neuronal Defense (bottom left, blue): Engaging cellular pathways such as Nrf2 and 
SIRT1 enhances antioxidant capacity, mitochondrial function, and autophagic clearance. These self-defense mechanisms help 
shield neurons from oxidative damage and protein misfolding. Stimulating Regeneration and Connectivity (bottom right, 
orange): Techniques like PTEN inhibition and neuromodulation (e.g., deep brain stimulation or chemogenetics) promote axonal 
growth and reconstitution of neural circuits. Together, these therapeutic domains represent a multifaceted approach to treating 
neurodegenerative conditions such as AD, PD, and ALS. Neuron icon by Vecteezy (https://www.vecteezy.com/).

implicated in schizophrenia, post-traumatic stress disorder, autoimmune cognitive syndromes, and age-
related cognitive decline. In AD, subtype-specific NMDA receptor antagonists or allosteric modulators may 
protect against excitotoxic injury and support synaptic integrity [209–211]. Memantine, a currently 
approved NMDA receptor modulator, has demonstrated modest symptomatic benefit in AD patients but 
does not significantly alter disease progression [212–214].

In addition to receptor modulation, epigenetic regulation of plasticity-related genes offers another 
therapeutic frontier. Expression of key genes such as BDNF and Arc is governed by histone acetylation and 
DNA methylation, processes controlled by enzymes like histone acetyltransferases (HATs) and DNA 
methyltransferases (DNMTs) [215, 216]. Pharmacological or behavioral modulation of these pathways may 
reactivate transcriptional programs essential for synaptic restructuring.

Physical interventions such as aerobic exercise and intermittent fasting promote synaptic plasticity via 
metabolic reprogramming and increased BDNF expression [217–219]. Furthermore, non-invasive brain 
stimulation (NIBS) techniques, such as transcranial magnetic stimulation (TMS) and transcranial direct 
current stimulation (tDCS), have demonstrated potential in reversing cortical atrophy and enhancing 
plasticity [220–222].

https://www.vecteezy.com/
https://www.vecteezy.com/
https://www.vecteezy.com/
https://www.vecteezy.com/
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Modulation of neurotransmission and signal integration

While synaptic plasticity defines the adaptability of neural circuits, neurotransmission ensures signal 
fidelity and integration across brain networks. Neurodegenerative diseases often disrupt neuromodulatory 
pathways, further impairing cognitive and motor functions. This section focuses on pharmacological 
strategies that enhance neurotransmitter signaling and modulate network activity to support function and 
recovery.

Neuromodulatory systems constitute key therapeutic targets for cognitive enhancement [223]. The 
cholinergic system, essential for attention, learning, and cortical plasticity, is profoundly disrupted in AD 
[224]. Early therapeutic efforts using muscarinic receptor agonists like xanomeline were limited by 
peripheral side effects. However, recent approaches that pair xanomeline with trospium, a peripherally 
acting muscarinic antagonist, have improved tolerability and clinical efficacy, leading to regulatory 
approval [225, 226]. Additionally, acetylcholinesterase inhibitors (e.g., donepezil) and both muscarinic and 
nicotinic receptor agonists support cholinergic tone and enhance cognitive performance [227].

Dopaminergic signaling plays a central role in working memory, motivation, and goal-directed 
behavior. Dopamine D1 receptor agonists and reuptake inhibitors such as methylphenidate are used to 
enhance prefrontal cortex function and are effective in conditions such as PD and attention-
deficit/hyperactivity disorder (ADHD) [228]. The noradrenergic system, particularly through α2A-
adrenergic receptor signaling, modulates executive function and emotional regulation. Agents such as 
guanfacine (an α2A adrenergic agonist) and atomoxetine, a norepinephrine reuptake inhibitor, have 
demonstrated clinical efficacy in improving attention and working memory, and are used in the treatment 
of ADHD and post-traumatic stress disorder [223, 229].

In summary, the therapeutic modulation of neuromodulatory systems provides a diverse toolkit to 
enhance synaptic function. These approaches, ranging from receptor-targeted pharmacology to systemic 
neuromodulation, can be integrated with molecular and epigenetic interventions. Future strategies will 
likely emphasize combinatorial regimens, optimized in terms of target hierarchy, temporal dynamics, and 
dosage to maximize benefit while minimizing adverse effects.

Boosting neurotrophic factor support and delivery

Building on the modulation of neurotransmitter systems, another crucial dimension of neuroprotection 
involves sustaining the cellular environment that allows neurons to survive, adapt, and thrive. This includes 
not only neurotransmission but also the support of neurotrophic factors that promote neuronal health and 
synaptic maintenance. The section explores how such trophic support, alongside intrinsic resilience 
mechanisms and regenerative capacity, can be leveraged therapeutically.

BDNF plays a pivotal role in enhancing synaptic efficacy and promoting neurogenesis, particularly in 
glutamatergic circuits [230, 231]. BDNF signaling is frequently downregulated in neurodegenerative 
conditions, and strategies to restore its levels have demonstrated improvements in synaptic integrity and 
cognitive outcomes [129, 130]. Cleavage of the signaling receptor for BDNF, the tropomyosin receptor 
kinase B-full length (TrkB-FL), occurs in human tissue and in animal models of brain diseases [232]. 
Prevention of that cleavage may, therefore, prove a way to go towards novel therapies to halt 
neurodegeneration. Important in this context is the recent development of drug, a small TAT-TrkB peptide, 
that prevented TrkB-FL cleavage, improved cognitive performance, ameliorated synaptic plasticity deficits 
and prevented Tau pathology progression in vivo in a mouse model of AD [233].

Another key neurotrophic factor, glial cell line-derived neurotrophic factor (GDNF), has demonstrated 
significant neuroprotective effects in preclinical models of PD. GDNF exerts its protection by binding to the 
GDNF family receptor α-1 (GFRα) and c-Ret receptor complex, thereby maintaining the function and 
survival of dopaminergic neurons [234–236]. More recently, endoplasmic reticulum stress-regulating 
neurotrophic factors such as mesencephalic astrocyte-derived neurotrophic factor (MANF) and cerebral 
dopamine neurotrophic factor (CDNF) have emerged as promising agents. These proteins help maintain 
proper proteostasis and attenuate endoplasmic reticulum stress, thereby supporting dopaminergic neuron 
viability [237, 238].
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Additional neurotrophic factors, including insulin-like growth factor 1 (IGF-1) and nerve growth factor 
(NGF), exert complementary effects by regulating cellular metabolism, promoting anti-apoptotic pathways, 
and enhancing myelination [239, 240]. Despite their therapeutic promise, clinical translation has been 
hindered by the difficulty of achieving effective delivery into the brain. The BBB remains the major obstacle, 
and even molecules capable of crossing it often do so inefficiently or without reaching therapeutically 
relevant concentrations. To overcome this limitation, new delivery platforms are under development. 
Extracellular vesicles, constituted by exosomes derived from mesenchymal stem cells, can encapsulate 
BDNF, GDNF, and related factors, facilitating their transport across the BBB with minimal immunogenicity 
[241, 242]. In parallel, vectors consisting of adeno-associated viruses (AAV) provide a gene therapy-based 
approach for sustained, localized expression of neurotrophic factors in target brain regions [243, 244]. 
Other approaches include small-molecule mimetics and lifestyle interventions, such as phenolic-rich diets, 
which may enhance endogenous neurotrophin production [245–247].

A novel and increasingly compelling area of research involves the neuroimmune interface, particularly 
the role of regulatory T cells (Tregs). In preclinical neurodegeneration models, Tregs provide dual benefits: 
Suppression of neuroinflammatory cascades and induction of neurotrophic factor release, including CDNF, 
via crosstalk with neural substrates [248–250]. This immunomodulatory mechanism highlights a promising 
therapeutic avenue that bridges the immune and nervous systems.

Emerging paradigms consist of a convergence of molecular, cellular, and systemic strategies aimed at 
optimizing neurotrophic support. The integration of gene therapy, targeted delivery vehicles, and immune-
based modulation offers a sophisticated framework to counteract neuronal loss and functional decline in 
neurodegenerative disorders.

Mobilizing intrinsic neuroprotective mechanisms

While neurotrophic factor therapies focus on enhancing extrinsic support mechanisms, neurons also 
possess internal defense pathways. These intrinsic mechanisms, ranging from oxidative stress control to 
autophagy regulation, form the next layer of neuron-targeted interventions.

Intrinsic neuroprotection refers to the activation of endogenous cellular programs that bolster 
neuronal survival under stress. These mechanisms often intersect with pathways influenced by trophic 
factors, creating a continuum of extrinsic and intrinsic support. One of the principal molecular regulators of 
such defense is the Nrf2–antioxidant response element (ARE) signaling axis, which orchestrates antioxidant 
and cytoprotective gene expression programs [251]. Pharmacological activators of Nrf2, including dimethyl 
fumarate and sulforaphane, mitigate oxidative stress and improve mitochondrial efficiency in preclinical 
disease models [252].

Sirtuins, particularly SIRT1 and SIRT3, have also emerged as key modulators of neuronal resilience. 
These NAD+-dependent deacetylases regulate mitochondrial biogenesis through transcriptional players 
such as the peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α), as well as 
pathways involved in DNA repair and redox balance [253, 254]. Sirtuin activation has demonstrated 
neuroprotective effects in models of neurodegeneration and neuroinflammation [255].

Given their extended lifespan, neurons rely heavily on autophagy-lysosomal mechanisms to clear 
misfolded proteins and damaged organelles. Pharmacological enhancers of autophagy such as rapamycin 
and metformin, act broadly on this system, while more targeted strategies, such as urolithin A to stimulate 
mitophagy, are under active investigation [256, 257].

A novel and increasingly studied structure in this context is the primary cilium, a microtubule-based 
organelle that functions as a signaling hub for pathways including Sonic Hedgehog (Shh), Wnt/Wingless, 
and mechanistic target of rapamycin (mTOR). Through this compartment, neurons are able to coordinate 
oxidative stress responses, survival signaling, and proteostatic control [258–260]. Structural disruption of 
the primary cilium impairs these signaling processes and is associated with exacerbation of 
neurodegenerative pathology [261, 262].
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Emerging therapeutic strategies have begun to target ciliary signaling directly. These include the use of 
Smoothened (Smo) agonists to activate Shh signaling, as well as small-molecule modulators of intraflagellar 
transport (IFT) proteins to restore ciliary trafficking and structural integrity [263–268]. Such interventions 
hold promise for enhancing neuronal stress resistance by reinforcing endogenous cytoprotective 
mechanisms [262, 266].

Purine nucleosides, namely adenosine and guanosine, have relevant neuroprotective roles by acting 
both centrally and peripherally, via activation of their receptors and intracellular signaling mechanisms 
[269, 270]. A main problem with adenosine receptor-based therapies, in particular those directed towards 
the ubiquitous neuroprotective receptor, the adenosine A1 receptor, is the side effects. Less problematic in 
this respect are the antagonists of the pro-excitotoxic adenosine A2A receptor [271] as well as drugs 
directed towards the relatively disregarded low expressed adenosine A3 receptor [272, 273]. A way to go 
may be to selectively target receptors overexpressed in diseased tissue, as it has been recently highlighted 
for a drug with A3 receptor agonist properties that selectively boosts GABAergic transmission [274].

Unlocking neural regeneration and circuit rewiring

Yet even when intrinsic defenses succeed in delaying damage, functional recovery remains limited unless 
structural connectivity is restored. This highlights the importance of regenerative strategies to rebuild 
disrupted networks.

Regeneration-based therapies are designed to overcome the inherently limited axonal regenerative 
potential. Utilizing a combination of molecular interventions and bioengineering, these approaches seek to 
reconstruct functional neural networks lost to injury or disease. This is possible because, despite the 
traditional classification of adult CNS neurons as non-regenerative, they maintain a latent capacity for 
growth. Strategic manipulation of intrinsic pathways, exemplified by Phosphatase and Tensin homolog 
(PTEN) inhibition, can suppress growth constraints and re-activate robust axonal extension [267, 268]. 
Likewise, transcriptional reprogramming with factors such as SRY-Box Transcription Factor 11 (SOX11), 
Krüppel-Like Factor 7 (KLF7), or c-Jun transcription factor induces pro-regenerative phenotypes in CNS 
neurons [267, 275].

Eventually, extrinsic factors in the neural environment also pose major barriers. Nogo-A, a myelin-
associated neurite outgrowth inhibitor, along with chondroitin sulfate proteoglycans in the extracellular 
matrix, actively suppress axonal outgrowth. Interventions such as chondroitinase ABC and neutralizing 
antibodies against myelin inhibitors have demonstrated modest success in facilitating axonal sprouting and 
synaptic reorganization [276].

A conceptually transformative strategy involves cellular reprogramming. In animal models, glial cells 
such as astrocytes and NG2 oligodendrocyte precursor cells can be directly converted into functional 
neurons in vivo via ectopic expression of neurogenic transcription factors like NeuroD1 and Ascl1. This 
approach bypasses the complexities of cell transplantation and enables region-specific neuronal 
replacement within the native brain environment [277].

However, translating these findings into clinical applications presents significant challenges [278]. 
While proof-of-concept is firmly established in rodent models, issues such as delivery efficiency, long-term 
integration, and avoidance of maladaptive circuitry must be resolved to enable therapeutic implementation 
in the human CNS.

Ultimately, meaningful recovery depends not only on regenerating individual neurons but also on 
reconstructing functional network architecture. Neuromodulatory techniques, such as optogenetics, 
chemogenetics using designer receptors exclusively activated by designer drugs (DREADDs), and clinical 
interventions like deep brain stimulation and vagus nerve stimulation (VNS), are being utilized to 
reestablish circuit synchrony. Evidence suggests that restoring coordinated activity, rather than simply 
increasing cell number, is key to improving behavioral outcomes [279].
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Translation of these regenerative and network-based therapies into clinical practice will require 
careful calibration. For example, mTOR signaling must be modulated to promote autophagy and clearance 
of toxic protein aggregates (e.g., Aβ or tau) without compromising synaptic maintenance [280]. Similarly, 
regenerative outgrowth must be guided to avoid aberrant rewiring and potential excitotoxicity. The rapid 
advancement of tools in molecular reprogramming, gene delivery, and circuit-level modulation may shift 
the paradigm, transforming the idea of functional brain restoration from speculative to increasingly 
attainable.

Still, successful regeneration requires not just structural growth but functional integration into existing 
circuits. Emerging neuromodulation techniques may help bridge this gap.

From mechanisms to therapies: an integrative view

Despite significant advances in understanding neuronal dysfunction, translating these insights into effective 
treatments remains challenging. As a result, combating neurodegenerative diseases now demands a 
multidisciplinary approach aimed at developing therapies that not only slow progression but also preserve 
and restore cognitive and functional capacity.

Pharmacological approaches targeting AMPA and NMDA receptors, cholinergic and dopaminergic 
systems, as well as epigenetic and lifestyle-based interventions, offer measurable symptomatic relief and 
provide valuable tools for modulating synaptic function. Nonetheless, their long-term disease-modifying 
potential remains limited, in part due to the complexity of underlying pathophysiological processes and 
compensatory mechanisms within the human brain.

Enhancing intrinsic neuronal resilience through pathways such as Nrf2–ARE signaling, sirtuin 
activation, and the regulation of autophagy reflects a promising avenue grounded in the reinforcement of 
cellular homeostasis. Yet even these strategies face limitations in terms of delivery specificity, metabolic 
variability among patients, and potential off-target effects. Similarly, the restoration of neurotrophic 
support, whether through exogenous administration, gene therapy, or immune-mediated modulation, 
illustrates a growing sophistication in therapeutic design, although questions regarding long-term efficacy, 
immune tolerance, and BBB penetration remain unresolved.

One of the most conceptually ambitious directions in neurotherapeutics is the shift from protective to 
regenerative paradigms. Experimental techniques that aim to reprogram glial cells into neurons or 
stimulate latent axonal growth pathways have yielded promising results in preclinical models. However, 
their translation to human applications is far from imminent. The CNS in humans presents considerable 
anatomical, immunological, and functional challenges, and ensuring that regenerated neurons integrate 
meaningfully into pre-existing circuits without causing maladaptive rewiring or excitotoxicity is a task of 
extraordinary complexity. Neuromodulatory technologies such as deep brain stimulation, optogenetics, and 
chemogenetics offer tools to partially guide and refine network-level activity; however, regenerative 
medicine for the human brain remains largely conceptual in the clinical domain.

In summary, the therapeutic landscape for neurodegeneration is moving toward a multimodal, multi-
tiered approach. No single intervention will suffice. Rather, success will depend on the strategic 
combination of protective, supportive, and regenerative strategies tailored to the temporal and pathological 
stage of disease. The future of neuron-targeted therapies lies in their integration, molecular precision, 
circuit-level modulation, and personalized timing, working together to restore lost function in the human 
brain. The most ambitious and promising advances on targeting neurons still belong to the realm of 
experimental research, and their successful translation into safe, effective, and scalable interventions for 
human neurodegenerative disease will require a careful balance of innovation, mechanistic understanding, 
and clinical restraint.

Astrocyte-targeted therapies
Having examined neuron-focused therapeutic strategies, we now turn to astrocytes, a glial population 
increasingly recognized as active players and potential therapeutic targets in neurodegeneration. 
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Astrocytes contribute to neuronal communication and the maintenance of brain homeostasis, supporting a 
wide array of physiological processes (Figure 3). Their discovery is closely tied to the work of Camillo Golgi, 
whose staining techniques first made glial cells visible. The name “astrocyte”, derived from their 
characteristic star-shaped morphology, was coined later by Mihály Lenhossék. A major advance came in 
1913, when Santiago Ramón y Cajal, using the gold-sublimate method, described two key astrocyte 
subtypes: Protoplasmic astrocytes, found in grey matter and marked by fine, elaborate processes, and 
fibrous astrocytes, present in white matter and distinguished by longer, fiber-like extensions. He further 
showed that astrocytic processes envelop neurons and associate with blood vessels, foreshadowing their 
functional diversity. These foundational observations laid the groundwork for today’s understanding of 
astrocyte heterogeneity and specialization in the CNS [281].

Figure 3. Major roles of astrocytes in the CNS. Astrocytes play essential roles in the CNS by performing multiple 
interconnected functions. These include inter-astrocyte communication; the formation and maintenance of the BBB; regulation of 
ion and water homeostasis; and energy metabolism by providing energetic substrates to neurons. Astrocytes also interact with 
microglia to induce innate immune responses, contribute to injury responses and protect healthy tissue. They support 
oligodendrocytes and promote axonal myelination through both secreted factors and direct astrocyte–oligodendrocyte or 
astrocyte–axon interactions. Furthermore, astrocytes regulate synaptic function by modulating synaptic transmission and 
plasticity, buffering extracellular K+, taking up neurotransmitters, and releasing gliotransmitters. Therapeutic integration across 
these domains holds potential for multi-modal intervention in AD, PD, HD, ALS and other neurodegenerative disorders. Neuron 
icon was designed by Inkscape (https://inkscape.org/da/).

The role of astrocytes in maintaining neural homeostasis

To understand their therapeutic potential, it is first important to explore how astrocytes sustain neural 
homeostasis and how this balance can shift from protective to detrimental in disease context. Astrocytes 
exert both neuroprotective and neurotoxic effects, depending on environmental cues. From the earliest 
accounts of AD, Alois Alzheimer documented changes in non-neuronal cells near amyloid plaques, a 
phenomenon now known as reactive astrogliosis [282]. This response is not exclusive to AD [283], but is 
also a hallmark of PD, ischemic stroke, and ALS, in which astrocyte reactivity is critically involved in disease 
development.

In AD, astrocytes assist in Aβ removal via autophagy pathways [284] and activation of the urea cycle, 
notably through enhanced expression of ornithine decarboxylase 1, a key enzyme in polyamine 
biosynthesis [285]. This leads to increased GABA and H2O2 levels through MAO-B–mediated conversion of 
putrescine [286]. While initially protective, rising H2O2 levels disturb redox balance, promote oxidative 

https://inkscape.org/da/
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stress, and contribute to neuronal death and brain shrinkage. Ultimately, this cycle impairs antioxidant 
defenses and drives a self-reinforcing process that hastens AD progression.

Reactive astrocytosis is a consistent pathological hallmark not only in AD, but also in PD, ischemic 
stroke, and ALS. Astrocytes contribute to neurodegeneration by releasing neurotoxic molecules and 
disrupting neuronal equilibrium [287–290]. Their influence on neuronal communication and brain 
homeostasis is largely exerted via gliotransmitters such as GABA, glutamate, D-serine, lactate, and 
ATP/adenosine, in addition to neurotrophic factors like proBDNF and BDNF. Astrocytes also regulate 
oxidative stress and cytokine production through complex pathways that are still being unraveled.

Transcriptomic techniques, including RNA sequencing of region-specific samples, have enabled a 
nuanced understanding of the astrocyte transcriptome in rodents and humans. These studies have revealed 
that astrocytes express a rich, cell-specific repertoire of genes. Moving beyond classical markers like glial 
fibrillary acidic protein (GFAP), this transcriptome includes genes for extracellular matrix components, 
glutamate transporters, and various transcription factors. This diversity reflects the pronounced spatial and 
temporal heterogeneity of astrocytes [291].

Astrocytes actively participate in synaptic signaling through the release of gliotransmitters, modulation 
of ion balance, and cytokine control [292]. Under pathological conditions, they may initially exert 
neuroprotective effects, yet prolonged activation often results in metabolic disturbances and neurotoxic 
gliotransmission, highlighting their dual role in CNS pathology and their potential in therapy [293].

CNS injury-induced astrocyte activation has strengthened the view that many neurodegenerative 
diseases involve non-cell-autonomous mechanisms, where glial cells, especially astrocytes, actively shape 
disease progression. Research on ALS has been particularly informative in establishing this concept [294].

Astrocytes as physiological regulators of CNS function

Beyond homeostatic support, astrocytes serve as key regulators of fundamental CNS physiology, influencing 
metabolic supply, neurotransmission, and synaptic plasticity.

Metabolic support is mediated by the astrocyte–neuron lactate shuttle, which fuels neuronal activity 
under both normal and stress conditions.

Metabolic support and the astrocyte-neuron lactate shuttle

Astrocytes take up glucose via GLUT1 and metabolize it via glycolysis, generating lactate through lactate 
dehydrogenase (LDH). This lactate is then exported by MCT1 and MCT4 transporters and imported into 
neurons via MCT2, where it fuels neuronal ATP production [295, 296]. Altered LDH expression impacts 
neuronal excitability and synaptic function [297]. Calcium-dependent regulation of this astrocyte-neuron 
lactate shuttle allows flexible adaptation to neuronal energy needs. Lactate also protects neurons during 
metabolic stress and influences gene expression related to plasticity [298].

GABA synthesis and tonic inhibition

In addition to energy metabolism, astrocytes contribute to GABAergic signaling by synthesizing GABA 
through the MAO-B and diamine oxidase pathways, and possibly through glutamate decarboxylation [299–
302]. GABA is released via Best1 and VRACs, fine-tuning extrasynaptic GABAA receptor activity and 
modulating network excitability [303, 304]. Sirtuin 2 (SIRT2) and aldehyde dehydrogenase 1 family 
member A1 (ALDH1A1) are critical for astrocytic GABA production in AD; upregulation of these enzymes 
occurs in hippocampal astrocytes of patients and of a transgenic AD model [305]. Members of this 
astrocytic GABA production system are increasingly recognized as therapeutic targets.

Glutamate homeostasis and excitatory balance

In addition to GABAergic signaling, astrocytes play a fundamental role in maintaining glutamate 
homeostasis, which is essential for modulating tonic activation of N-methyl-D-aspartate receptors 
(NMDARs) [284, 306], typically composed of two GluN1 subunits and either two GluN2A or two GluN2B 
subunits [307].
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Astrocytes regulate extracellular glutamate through uptake via EAATs [308] and release via channels 
like TREK1 and Best1, vesicular pathways, and the cystine/glutamate antiporter [4, 30–32, 284, 309–311]. 
Glutamate synthesis involves the TCA and glutamate-glutamine cycles, supporting neurotransmitter 
recycling and synaptic plasticity [312, 313]. These actions modulate NMDA and AMPA receptor activity, 
ensuring a balanced excitatory-inhibitory environment. Interestingly, the activity of these ionotropic 
receptors in turn regulates cell metabolism [314].

D-serine and NMDA receptor co-activation

L-serine is converted to D-serine by serine racemase in astrocytes, regulating NMDA receptor activation via 
GluN1 subunits [315]. D-serine release occurs via exocytosis, ASC transporters, and Best1 channels [284, 
306, 316–319]. Dysregulation of D-serine contributes to cognitive and neuropsychiatric symptoms in 
neurodegenerative conditions [320, 321].

ATP/adenosine signaling and network

Astrocytes release ATP through both vesicular and non-vesicular routes, with subsequent conversion to 
adenosine by ectonucleotidases [322–326]. Via purinergic receptors these molecules modulate 
neurotransmission by inhibiting excitatory input and enhancing GABAergic tone [326–330]. They also 
influence firing rates and axonal conduction, shaping plasticity and behavioral state transitions [326, 331]. 
Effects vary by receptor subtype. Activation of adenosine A1 receptors by astrocytic ATP-derived adenosine 
generally suppresses synaptic activity across multiple brain regions, including the hippocampus [332–337], 
cortex [338], cerebellum [339], retina [340], amygdala [341], and nucleus accumbens [342]. In contrast, 
activation of adenosine A2A receptors tends to facilitate synaptic transmission, particularly in the 
hippocampus [343, 344]. They are also expressed in the hypothalamus [345]. Remarkably, astrocytes can 
exert opposing effects on different synaptic inputs depending on the adenosine receptor subtype.

BDNF and proBDNF release and effects

Astrocytes synthesize and secrete proBDNF in response to diverse stimuli, possibly internalizing and 
processing neuronal proBDNF into mature BDNF [64–67, 346–349]. Vesicular release, mediated by VAMP3, 
is regulated by Ca2+ signaling [350]. While BDNF supports plasticity via TrkB, proBDNF can activate p75 
receptors and trigger apoptosis [67, 349]. TrkB-T1 signaling in astrocytes also influences GABA uptake, 
calcium dynamics, and cell morphology [351–355].

The functional impact of astrocyte-derived proBDNF appears to be highly context-dependent. Under 
physiological conditions, it supports synaptic plasticity [346], whereas under pathological states, such as 
during astrocytic necroptosis, proBDNF may exert neurotoxic effects and promote apoptotic signaling 
[349].

In cultured astrocytes, the truncated isoform of the TrkB receptor (TrkB-T1, also known as TrkB-Tc) 
mediates rapid intracellular Ca2+ transients in response to brief BDNF exposure. This effect is dependent on 
phospholipase C activation and subsequent calcium release from IP3-sensitive intracellular stores [351]. 
Beyond calcium signaling, BDNF–TrkB-T1 interactions also regulate astrocytic function by modulating the 
activity of the GABA transporter GAT-1, thereby influencing GABA uptake dynamics [352]. Additionally, 
TrkB-T1 has been implicated in structural modulation, including the regulation of dendritic filopodia 
formation in hippocampal neurons [353], the morphology of neocortical layer I astrocytes in adult brain 
slices [354], and astrocyte shape via Rho GTPase signaling in primary culture systems [355].

Cytokine signaling and neuroimmune interactions

Astrocytes release cytokines like IL-1β, IL-6, TNF-α, CCL2, and CXCL10 in response to injury and 
inflammation [128, 356]. Cytokine expression is typically induced by the activation of Toll-like receptors 
(TLRs), which initiate downstream signaling cascades involving NF-κB and MAPK pathways [357, 358].

Astrocytes are capable of producing both pro-inflammatory and anti-inflammatory cytokines, such as 
IL-6 [358], and the bidirectional communication between astrocytes and microglia is central to shaping the 
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inflammatory milieu within the CNS. Notably, microglia can induce a neurotoxic astrocytic phenotype by 
releasing IL-1α, TNF-α, and complement component C1q. These factors collectively reprogram astrocytes to 
secrete additional neurotoxic mediators, further amplifying neuroinflammatory responses [357].

Redox regulation and ROS/RNS signaling

Astrocytes generate H2O2 and NO via mitochondrial respiration and enzymes such as MAO-B, diamine 
oxidase, NADPH oxidases, and inducible nitric oxide synthase (iNOS) [359–364]. Dysregulation leads to 
oxidative stress, promoting inflammation and neurodegeneration. Antioxidant capacity, including catalase 
activity, may be impaired in pathological conditions [365]. H2O2 can diffuse or be transported via 
aquaporins, while NO passively permeates membranes [366]. Astrocytes generate ROS through multiple 
enzymatic pathways, including mitochondrial sources, particularly the electron transport chain, and 
cytosolic enzymes such as MAO-B, diamine oxidase, and NADPH oxidases. In reactive astrocytes, MAO-B 
activity is notably elevated, leading to increased production of H2O2, while NADPH oxidase 2 is frequently 
upregulated, further amplifying ROS generation [359, 363].

ROS and reactive nitrosylation species (RNS) also act as critical signaling molecules that modulate 
synaptic strength, neurotransmitter release, and cerebral blood flow [367]. For example, the NO molecule 
plays a well-established role in vasodilation and synaptic communication. However, when ROS and RNS 
levels become dysregulated, they can cause oxidative damage to lipids, proteins, and DNA, triggering 
inflammation, impairing synaptic function, and ultimately contributing to neuronal degeneration [368]. 
This state of oxidative and nitrosative stress is a hallmark of numerous neurodegenerative diseases, 
underscoring the central role of astrocytic redox regulation in maintaining CNS homeostasis and preventing 
neuropathology.

Therapeutic interventions

Astrocytes in the CNS may dynamically shift between neuroprotective and neurotoxic states. This 
functional polarity is finely modulated by membrane-bound proteins, receptors, channels, and transporters 
that govern essential processes such as ion homeostasis, neurotransmitter clearance, and neuroimmune 
signaling (Figure 4). Given this critical regulatory capacity, astrocytes are now increasingly considered 
direct therapeutic targets, with several strategies emerging to modulate their activity and counteract 
neurodegenerative cascades.

Among these regulatory systems, three have emerged as particularly compelling therapeutic targets 
due to their pivotal involvement in both physiological and pathological contexts: The excitatory amino acid 
transporter 2 (EAAT2, also known as GLT-1 in rodents), aquaporin-4 (AQP4), and purinergic receptors, 
particularly the P2X7 and P2Y1 subtypes. Modulating EAAT2, AQP4, and purinergic signaling offers a unique 
opportunity for targeted intervention, selectively disrupting neurotoxic cascades while preserving the 
essential homeostatic functions of astrocytes. This therapeutic strategy holds significant translational 
promise for neurodegenerative diseases such as AD, ALS, and PD [128, 360].

EAAT2 (GLT-1) targeting to limit glutamate excitotoxicity

EAAT2, which mediates over 90% of synaptic glutamate uptake [369], is the primary mechanism for 
clearing extracellular glutamate; EAAT2 prevents excitotoxicity by maintaining extracellular glutamate 
concentrations at ~25 nM [308, 370–373].

In AD, reactive astrocytes show significantly diminished EAAT2 expression due to a dual mechanism 
involving ROS and pro-inflammatory cytokines. These factors not only suppress EAAT2 transcription but 
also accelerate transporter degradation. Post-mortem analyses reveal a striking 60–70% loss of EAAT2 
protein levels in the hippocampus and cortex of AD patients [283, 374]. Glutamate accumulation to 
micromolar levels [375] results in GluN2B-mediated NMDA receptor overactivation, Ca2+ overload, and 
subsequent tau hyperphosphorylation and dendritic spine collapse [376], linking excitotoxicity to 
amyloidogenesis [28].
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Figure 4. Astrocyte-targeted therapeutic strategies for neurodegenerative disease intervention. Dysfunction of key 
astrocytic molecular systems, such as those mediated by the EAAT2, AQP4, and purinergic receptors, contributes to 
neurodegenerative and neurological diseases, including AD, ALS, epilepsy, MS, and sleep fragmentation–associated pathology. 
Top row: In healthy conditions, the excitatory amino acid transporter 2 (EAAT2; known as GLT-1 in rodents) maintains 
glutamate homeostasis by clearing extracellular glutamate in exchange for Na+, K+, and H+ ions. In AD, EAAT2 downregulation 
leads to overactivation, Ca2+ overload, tau hyperphosphorylation, and dendritic spine collapse. In ALS, reduced astrocytic 
EAAT2 levels and altered microRNA regulation (e.g., increased miR-218 and decreased miR-124a) result in the accumulation of 
EAAT2-derived toxic species, accumulation of glutamate, and motor neuron degeneration. Middle row: Aquaporin-4 (AQP4) 
regulates astrocytic water transport and is essential for glymphatic clearance. In AD, decreased AQP4 activity impairs Aβ and 
tau clearance, partly via reduced LRP1-mediated transport. In epilepsy, AQP4 upregulation contributes to altered ionic and 
osmotic homeostasis that promotes hyperexcitability. Sleep fragmentation induces AQP4 mislocalization from astrocytic 
endfeet, reducing CSF clearance efficiency. Bottom row: Purinergic signaling, mediated by adenosine (A1, A2A) and P2-type 
(P2X7, P2Y1) receptors, coordinates astrocytic inflammatory and metabolic responses. In AD, altered A2A and A1 receptor-
mediated signaling modulates EAAT2 expression, AQP4 polarization, and inflammatory states, while P2X7 receptor 
hyperactivation exacerbates neuroinflammation and astrocyte-mediated cell death. In epilepsy, upregulated P2Y1 receptor 
signaling disrupts Ca2+ dynamics and enhances glutamate release. In MS, elevated P2X7 receptor activation promotes cytokine 
release and oligodendrocyte injury, contributing to demyelination and neurodegeneration. Therapeutic integration across these 
domains holds potential for multi-modal intervention to prevent neurodegeneration.

The role of glutamate transport is particularly intriguing in ALS. Initially, severe loss of astrocytic 
EAAT2 was detected in spinal cords of several patients who had died with sporadic ALS [97]. Subsequently. 
the finding was corroborated in a transgenic model of ALS where rats or mice express the mutant Cu2+/Zn2+

-dependent superoxide dismutase (SOD1G93A) originating from a form of human familial ALS; the levels of 
EAAT2/GLT1 as well as the efficiency of glutamate transport were significantly reduced in the transgenic 
animals [377–380]. Expression of EAAT2 is also altered (decreased) in the motor cortex of ALS patients, 
apparently in a post-transcriptional manner [381, 382]. Apart from the SOD1G93A transgenic animals, 
other models have been produced and shown to be deficient in EAAT2/GLT1 [383, 384]. Induction of 
Astrocyte Elevated Gene-1 (Aeg-1), which codifies for metadherin, reduces EAAT2 expression, while Aeg-1 
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silencing restores transporter levels and improves neuronal viability [385]. Additionally, EAAT2 is subject 
to caspase-3-mediated cleavage, generating toxic C-terminal fragments, the appearance of which precedes 
the manifestations of ALS neurodegeneration [386]. Moreover, pharmacological inhibition of this cleavage 
delays neurodegeneration [386, 387]. At the post-transcriptional level, motor neuron-derived miR-218 
suppresses EAAT2 expression in astrocytes, establishing a detrimental feedback loop. Loss of miR-124a 
further exacerbates EAAT2 downregulation [388–390]. Strikingly, selective deletion of EAAT2 in spinal 
cord astrocytes is sufficient to induce motor neuron degeneration and impairs motor learning and 
coordination in mice [391]. On the basis of the above data [97, 377–379, 381–391], it is tempting to 
conjecture that EAAT2 is a key functional protein on which the health and survival of motor neurons 
depend. Accordingly, it could be singled out as a prime target for the development of effective ALS 
therapies. However, simple crossing of the SOD1G93A mice with mice overexpressing EAAT2 (to about a 
double of the normal level) resulted in an ALS model where the appearance of ALS signs and the onset of 
the motor neuron loss were only marginally delayed, with no effect on the final outcome [392]. 
Nevertheless, therapeutic strategies aimed at enhancing EAAT2 expression are still pursued.

Early attempts included the use of a beta-lactam antibiotic, ceftriaxone, which delayed the disease 
progression in animal models by upregulating EAAT2/GLT1 [393]. However, ceftriaxone failed to 
demonstrate efficacy in clinical trials [394]; this created a controversy that arguably slowed progress 
toward establishing EAAT2 as a therapeutic target in ALS [395, 396]. One should have perhaps heeded 
warnings from contemporary studies suggesting that a simple inhibition of glutamate transport in spinal 
cord in vivo, even if done over a period of time, does not necessarily produce the loss of motor neurons 
[397].

One unresolved question in ALS is why the neurons most susceptible to the altered/deficient EAAT2 
(and neurodegeneration) come from two different populations which do not have much in common: The 
lower motor neurons in the spinal cord are cholinergic and project peripherally while the upper motor 
neurons are glutamatergic, excitatory, reside in the cerebral neocortex and target the brain stem and spinal 
cord (corticobulbar and corticospinal tracts). The answer may lie in their size (including the long axons) 
and activity, leading to high metabolic demands [398]. This can make them, as well as the adjacent 
astrocytes and their metabolism, particularly vulnerable to deficient EAAT2; indeed, inhibition of glutamate 
transport in the guinea pig cerebral cortex in vitro has been shown to result in characteristic changes in the 
tissue metabolome [399]; it is not only what happens outside (increased glutamate in the extracellular 
space) but also inside the cells (metabolism) when glutamate transport falters. Persistent higher activity 
(neuronal excitation) caused by chronically increased extracellular glutamate, combined with higher 
metabolic/energy needs, could then produce a critical state potentially resulting in neuronal death. This 
would initially affect the most “metabolically” exposed upper and lower motor neurons. Maintenance of 
normal brain metabolism, at least in patients with known vulnerabilities to ALS, could thus represent a 
possible preventative strategy (not that we would advocate using currently over-the-counter available 
nootropics or supplements; they have not been tested for the purpose, are likely to be ineffective, and could 
carry significant risks in ALS patients).

In the meantime, attempts at upregulation of EAAT2 have continued, with encouraging [400, 401] or, 
sometimes, mixed/negative outcomes [402]. More promising, perhaps, are multi-target approaches that 
simultaneously enhance EAAT2 function and reduce oxidative stress, potentially offering a more robust 
neuroprotective effect [403].

Aquaporin-4 (AQP4) targeting to restore glymphatic function

AQP4 is the primary water channel in astrocytes, densely localized at perivascular end feet and critical for 
maintaining brain water homeostasis. It facilitates glymphatic clearance, a convective exchange of CSF and 
interstitial fluid (ISF) that removes metabolic waste, but also Aβ and tau [359, 366]. AQP4’s polarized 
distribution depends on its anchoring to the dystrophin complex via α-syntrophin, this interaction is 
relevant for its physiological function [404].
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In AD, impaired function of AQP4 disrupts Aβ clearance. Genetic deletion of Aqp4 in mouse models 
reduces Aβ efflux by approximately 55%, accelerating plaque deposition [405, 406]. This dysfunction is 
closely associated with the loss of astrocyte polarity, marked by a redistribution of AQP4 from perivascular 
end feet membranes into the neuropil. Such mislocalization impairs glymphatic clearance and alters water 
and potassium homeostasis, potentially exacerbating cognitive decline in AD [407]. Age-related reductions 
in arterial pulsatility further compromise AQP4’s perivascular localization, intensifying Aβ retention [408]. 
Although elevated perivascular AQP4 immunoreactivity is reported in AD brains, this likely reflects a 
maladaptive compensatory response rather than restored function [409]. Tau clearance is similarly 
impaired; glymphatic dysfunction strongly correlates with the burden of neurofibrillary tangles [410].

AQP4 dysregulation contributes to several other CNS disorders. In temporal lobe epilepsy, AQP4 is 
paradoxically upregulated despite the loss of α-syntrophin, suggesting maladaptive redistribution and 
impaired buffering [411]. In models of traumatic brain injury, AQP4 depolarization impedes tau clearance, 
and global Aqp4 knockout worsens neuropathology [412]. Sleep fragmentation in animal models of AD 
diminishes AQP4 expression, reducing CSF clearance to cervical lymph nodes [413, 414]. In neuromyelitis 
optica, pathogenic autoantibodies target AQP4 by binding to orthogonal arrays of particles, thereby 
disrupting astrocyte function [415, 416].

Given AQP4’s narrow pore and lack of canonical ligand-binding domains, direct pharmacological 
targeting remains challenging. Consequently, therapeutic strategies have shifted toward indirect, receptor-
mediated modulation.

Additionally, metabotropic glutamate receptor 5 (mGluR5) physically associates with AQP4, 
modulating its permeability properties [417], while circadian regulators such as Per2 contribute to AQP4 
polarization and glymphatic flow [418]. In neuromyelitis optica, Aquaporumab, a monoclonal antibody 
targeting AQP4-IgG, has demonstrated therapeutic potential [419].

Recent advances in imaging, including contrast-enhanced MRI with intrathecal gadolinium tracers, 
allow in vivo assessment of glymphatic clearance efficiency [420]. Collectively, these findings underscore 
the promise of receptor-based modulation of AQP4 function in treating neurological disorders 
characterized by impaired solute drainage.

Purinergic receptors: balancing neuroprotection and excitotoxicity

Astrocytes play a central role in maintaining CNS homeostasis through purinergic signaling, wherein 
extracellular ATP and its degradation product adenosine modulate synaptic activity, inflammation, and 
neuronal excitability via purinergic P2X, P2Y, and adenosine receptors [324, 326]. Among these, the 
purinergic P2X7 receptor, activated by high extracellular ATP levels, promotes neuroinflammation and cell 
death in neurodegenerative conditions such as PD, AD, and MS [331, 421]. Conversely, adenosine A1 
receptor activation exerts neuroprotective effects, while adenosine A2A receptor activation has been 
associated with synaptic dysfunction. The balance between these opposing outcomes is governed by 
ectonucleotidases, which control the conversion of ATP to adenosine [326]. Importantly, A2A receptors also 
modulate AQP4 polarization. Antagonism of A2A receptors can prevent stress-induced AQP4 mislocalization 
and preserve glymphatic clearance. Notably, deletion of the equilibrative nucleoside transporter 1 (ENT1) 
leads to reduced AQP4 expression, further linking purinergic signaling to astrocytic water channel 
regulation [422]. A2A receptor antagonism also has potential in reducing neuroinflammation and promoting 
solute clearance following CNS injury [423].

Astroglial P2Y1 and P2X7 receptors are key mediators in epilepsy and MS. In epilepsy, P2Y1 receptor 
overactivation perturbs intracellular calcium dynamics and increases glutamate release, thereby 
intensifying seizure activity. Pharmacological blockade using MRS2179, an antagonist of the P2Y1 receptor, 
restores synaptic balance and may represent a promising strategy for treating drug-resistant epilepsy [424, 
425]. Inflammatory cytokines like TNF-α further exacerbate this pathological loop [426]. In MS models, 
reactive astrocytes upregulate P2X7 receptors, driving cytokine release and oligodendrocyte injury [427, 
428]. P2X7 signaling also facilitates harmful interactions with infiltrating immune cells [429]. Inhibition of 
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this receptor reduces gliosis, protects axons, and improves clinical outcomes in preclinical MS models 
[430].

Multiple studies have reported increased adenosine levels in the CSF of ALS patients [431], along with 
increased adenosine A2A receptors expression in their lymphocytes [432]. In the SOD1(G93A) ALS animal 
model, decreased expression of adenosine A1 receptors and increased A2A receptors levels have also been 
observed, even before the onset of clinical symptoms [433]. Notably, hippocampal synaptic dysfunction in 
SOD1(G93A) mice was rescued by pharmacological blockade of A2A receptors, suggesting a pathogenic role 
for adenosinergic signaling in early disease stages [434]. Although these studies do not specifically 
differentiate between neuronal and astrocytic contributions, it is possible that the modulation of astrocytic 
A1 and A2A receptors may have an impact on the onset and progression of ALS, given the well-established 
importance of astrocytes in the disease [435].

Altogether, astrocytic purinergic receptors represent attractive therapeutic targets due to their early 
involvement in disease pathogenesis and in regulating key processes such as inflammation, neuronal 
excitability, and interstitial solute clearance. Future research should prioritize the development of receptor-
selective modulators with proven long-term efficacy, capitalizing on astrocyte-specific biology to optimize 
neuroprotective therapeutic outcomes.

Combinatorial approaches for astrocyte-targeted therapy

Although EAAT2, AQP4, and purinergic receptors each fulfill distinct roles in astrocytic physiology, their 
functional interdependence presents a compelling opportunity for synergistic therapeutic interventions. 
Crosstalk among these systems is mediated by converging pathways involving calcium signaling, redox 
homeostasis, inflammatory cascades, and extracellular nucleotide metabolism.

For example, reduced EAAT2 activity leads to elevated extracellular glutamate concentrations [309, 
310], which trigger excessive calcium influx into both neurons and astrocytes. This calcium overload 
promotes ATP release from astrocytes, activating P2X7 receptors and intensifying neuroinflammatory 
responses [421]. Simultaneously, reactive astrocytes often upregulate AQP4; when this channel becomes 
mislocalized, it may facilitate the spread of ROS, further exacerbating oxidative stress [436, 437]. Purinergic 
signaling, meanwhile, modulates both excitatory and inhibitory neurotransmission by regulating glutamate 
and GABA release [323]. The degradation of ATP into adenosine, controlled by ectonucleotidases, affects 
astrocytic tone via adenosine A1 and A2A receptors [438]. These receptors, in turn, influence EAAT2 
expression, AQP4 polarization, and the astrocytic potential to produce cytokines.

Therapeutic strategies that concurrently target these interrelated systems may yield superior 
outcomes compared to monotherapies. Enhancing EAAT2-mediated glutamate uptake, while 
simultaneously inhibiting P2X7-driven inflammation or restoring AQP4 polarization through A2A receptor 
antagonism, could provide multifaceted protection. Such polypharmacological approaches hold potential 
for breaking the vicious cycles that perpetuate excitotoxicity, neuroinflammation, and impaired interstitial 
solute clearance.

Advancing this integrated therapeutic paradigm will require a deeper understanding of the temporal 
dynamics and feedback loops governing these astrocytic networks. Recent progress in transcriptomics, 
proteomics, and single-cell technologies is beginning to illuminate the heterogeneity and context-specific 
plasticity of astrocyte subtypes across disease states, offering an unprecedented opportunity to develop 
targeted interventions with cell-type and disease-stage selectivity.

Microglia-targeted therapies
While astrocytes represent one crucial glial population involved in neurodegeneration, microglia embody 
the other major non-neuronal actors. The lessons learned from astrocyte-targeted strategies provide a 
natural transition to examining microglia, whose dual role as immune defenders and potential drivers of 
pathology makes them equally compelling therapeutic targets (Figure 5).
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Figure 5. From inflammation to neuroprotection. The evolving role of microglia in neurodegenerative diseases. 
Classical (left) and modern (right) views of microglial phenotypes. Cell illustrations were generated with the assistance of Sora, 
an AI-based image generation platform.

The classical view: microglia as engines of inflammation

The traditional view of microglia as simple agents of inflammation has been superseded by an 
understanding of their complex, dual-purpose functions in brain homeostasis maintenance and immune 
defense.

Microglia, discovered by Pio del Rio-Hortega [439–441], are the resident immune cells of the CNS and 
play a critical role in neuroinflammation, host defense against pathogens, and injury response [442]. 
Microglia detect harmful stimuli through pattern PRRs, particularly TLRs, which recognize pathogen-
associated molecular pattern (PAMP) and DAMP molecules released by injured neurons and glia [443]. 
TLR4, for example, activates intracellular signaling via the MyD88 adaptor protein, leading to NF-κB 
activation and subsequent transcription of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6), chemokines 
(CCL2, CXCL10), and other mediators [444]. In AD, NF-κB activation is linked to β-amyloid plaque-induced 
microglial stimulation [445], while in PD, α-synuclein aggregates act as DAMPs that activate TLR2 [446].

Microglia also use alternative receptors such as TREM2 (Triggering Receptor Expressed on Myeloid 
cells 2), which regulates the transition to the DAM phenotype [126, 447]. TREM2 interacts with 
phospholipids, apolipoproteins, and LPS, initiating intracellular signaling via DAP12 and DAP10. These 
pathways activate SYK and PI3K, which in turn promote phagocytosis, proliferation, and microglial survival 
[448, 449]. Loss of TREM2 disrupts mTOR signaling, increases autophagy, and impairs microglial clustering 
around plaques, thereby worsening pathology [29, 450].

Another key player is the NLRP3 inflammasome, a multiprotein complex that activates caspase-1 to 
process and release IL-1β and IL-18. In both microglia and astrocytes, this mechanism amplifies 
inflammation when activated by protein aggregates such as Aβ and α-synuclein that build up in 
neurodegenerative diseases [451, 452].

Microglial activation in neurodegenerative diseases

Building on the classical perspective, modern evidence reveals that microglia are dynamic participants in 
disease progression. Their activation patterns across disorders illustrate both harmful and protective 
influences. For decades, these cells were viewed primarily through the lens of neuroinflammation and 
neuronal damage, particularly due to their well-documented release of pro-inflammatory cytokines, 
including TNF-α, IL-1β, and IL-6 in conditions like AD and PD [124, 453–455]. This perspective stemmed 
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from consistent observations of microglial activation around pathological hallmarks such as Aβ plaques in 
AD and α-synuclein aggregates in PD. However, the emerging paradigm recognizes microglia as exquisitely 
plastic cells capable of adopting diverse functional states, including neuroprotective phenotypes that may 
actually counteract disease progression under certain conditions [120, 123, 456].

From a therapeutic standpoint, the near-ubiquitous presence of activated microglia across 
neurodegenerative diseases makes them a compelling target. Histopathological studies have demonstrated 
microglia exhibiting morphological features of activation—including enlarged cell bodies and retracted 
processes—not only in numerous animal models [457–459], but also in post-mortem human tissue samples 
[460, 461]. The development of advanced neuroimaging techniques, particularly positron emission 
tomography (PET) using radioligands for the translocator protein (TSPO), has enabled the visualization and 
confirmation of microglial activation in living PD patients [462, 463]. This technological advancement 
represents a significant step forward, as it may eventually allow researchers to monitor treatment-induced 
changes in neuroinflammation regardless of whether the therapeutic target is neuronal, astrocytic, or 
microglial in nature.

The reassessment of microglia’s role in neurodegeneration has been driven substantially by carefully 
designed animal studies. One particularly instructive example comes from research using 1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced models of PD, where chronic administration of 
monoacylglycerol lipase inhibitors was found to not only preserve dopaminergic neurons in the substantia 
nigra but also induce a distinctive microglial activation profile characterized by increased release of 
neurotrophic factors and decreased expression of classical inflammatory markers [459]. Similarly revealing 
findings have emerged from studies using the APPSw/Ind transgenic mouse model of AD. This transgenic 
mouse overexpresses the human amyloid precursor protein (APP) carrying two familial AD mutations: The 
Swedish mutation (KM670/671NL), which increases total Aβ production by enhancing β-secretase 
cleavage, and the Indiana mutation (V717F), which alters γ-secretase cleavage to favor production of the 
more aggregation-prone amyloid-beta 1–42 peptide (Aβ1–42) [464–467]. Intriguingly, microglia in these 
mice display an activated phenotype from birth, yet cognitive impairments only become apparent several 
months later. This temporal dissociation suggests that early microglial activation, acting in a 
neuroprotective fashion, may serve a compensatory or protective role, potentially delaying the onset of 
clinical symptoms [468].

Evolving phenotypes: from M1/M2 dichotomy to disease-associated microglia

The traditional classification of microglial phenotypes into binary M1 (pro-inflammatory) and M2 (anti-
inflammatory/neuroprotective) categories has provided a useful conceptual framework, though it is 
increasingly recognized as an oversimplification of their functional diversity (Figure 5). While M1-activated 
microglia are indeed associated with cytotoxic responses through mechanisms such as nitric oxide release, 
M2 cells promote tissue repair via secretion of trophic factors like IGF-1, GDNF, and transforming growth 
factor-β [469–471]. The concept of “disease-associated microglia” (DAM) demonstrates how transcriptomic 
insights reshape our understanding of microglial states [126]. Recognizing this plasticity has opened the 
door to therapeutic reprogramming. If microglia can be shifted toward beneficial states, they may 
transform from contributors to disease into mediators of neuroprotection.

Reprogramming microglia for neuroprotective functions

In human nervous tissue, the critical role of microglia in neurodegenerative disease pathogenesis has 
become increasingly evident. Activated microglia have been consistently identified in post-mortem 
examinations of patients with AD, PD, and ALS. AD cases in particular show striking microglial changes, 
with cells exhibiting marked hypertrophy and forming dense clusters around Aβ plaques [472, 473]. These 
observations strongly implicate microglia in disease progression, though whether their activation primarily 
drives pathology or represents a protective response remains debated.
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A particularly fascinating aspect of reactive microglia in neurodegeneration is their dynamic receptor 
expression profile—while these receptors are nearly undetectable in resting microglia, they become 
markedly upregulated upon activation. This disease-associated receptor signature, combined with growing 
evidence that microglial polarization can be shifted toward neuroprotective (M2-like) phenotypes, has 
opened exciting new avenues for targeted drug discovery. One promising therapeutic strategy involves 
targeting proteins that become upregulated in the DAM, such as TREM2, chemokine receptor CX3CR1, or 
adenosine A2A receptors, with the goal of modulating their activation state. The fundamental challenge lies 
in developing pharmacological agents capable of reliably shifting microglial polarization from pro-
inflammatory (M1-like) to anti-inflammatory, phagocytic (M2-like) phenotypes, thereby promoting 
neuroprotection while mitigating disease progression.

The adenosine A2A receptor serves as a particularly instructive example of a target with relevance to 
human neurodegenerative diseases. This receptor is expressed not only in neurons and astrocytes but also 
in microglia, and preclinical studies have demonstrated that A2A receptor antagonists exert robust 
neuroprotective effects across multiple animal models of neurodegeneration, including both AD and PD 
[474–478]. In PD models specifically, these compounds appear to modulate dopaminergic transmission in 
the striatum, leading to improvements in motor deficits [479]. Preclinical evidence further suggests that A2A 
receptor antagonists can synergize with existing therapies like levodopa while potentially mitigating 
troublesome side effects such as dyskinesias. The clinical potential of this approach is underscored by the 
approval of istradefylline in Japan and the United States as an adjunct therapy for PD patients experiencing 
motor fluctuations, representing the most advanced A2A receptor antagonists in clinical development [480–
482].

Microglial receptors as emerging therapeutic targets

Translating this idea into practice requires identifying accessible molecular handles. Receptors upregulated 
during microglial activation offer precisely such opportunities, making them attractive candidates for drug 
development. In AD models, A2A receptor blockade has been shown to enhance synaptic plasticity and 
cognitive function while protecting against both Aβ and tau-induced toxicity. The ability of these 
compounds to counteract oxidative stress and apoptosis further supports their potential utility across 
multiple neurodegenerative conditions, including HD and ALS. While early research primarily focused on 
neuronal A2A receptors, more recent studies have highlighted the importance of microglial A2A receptors. 
The receptor is now recognized as a promising target for modulating neuroinflammation and microglia-
mediated neuronal survival, particularly following the discovery of A2A receptor upregulation in microglia 
from the prefrontal cortex of AD patients [483]. The potential therapeutic benefits of blocking A2A receptor 
signaling in microglia appear broadly applicable across neurodegenerative diseases. In fact, adenosine 
acting through microglial A2A receptors potentiates nitric oxide release [484], and in PD models, A2A 
receptor antagonists reduce neuroinflammation by suppressing microglial activation and pro-inflammatory 
cytokine production, contributing to neuronal survival. Unfortunately, the neuroprotective potential of 
these drugs remains unproven in human clinical trials, as most studies to date have not been designed to 
evaluate disease-modifying effects. Several factors converge to make the assessment of neuroprotection in 
humans particularly challenging, including the inability to obtain brain biopsies, the lack of reliable 
biomarkers, species-specific differences in microglial responses, and suboptimal patient stratification. 
While directly measuring neuroprotection in living patients is technically unfeasible, alternative strategies, 
such as monitoring pro-inflammatory markers or neuroprotective cytokines in the plasma of patients 
receiving istradefylline, could offer valuable mechanistic insights and serve as surrogate indicators of 
therapeutic activity [485].

Beyond the A2A receptor, other microglial receptors have emerged as promising therapeutic targets. 
Colony-stimulating factor 1 receptor (CSF1R) inhibition, which leads to microglial depletion, has shown 
potential to modify disease progression in multiple neurodegenerative models. TREM2, which plays critical 
roles in phagocytosis and lipid metabolism, represents another compelling target, particularly as certain 
TREM2 variants significantly increase AD risk [29, 486, 487]. The purinergic receptor family, including 
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P2Y12 (involved in microglial chemotaxis) and P2X7 (which activates the inflammasome), is also being 
actively investigated as a potential pharmacological target [488, 489].

Despite these promising developments, translating microglial modulation into effective clinical 
therapies presents formidable challenges. The context-dependent nature of microglial responses, which 
vary by disease stage, brain region, and systemic environment, complicates the identification of universal 
therapeutic targets [41]. Moreover, interventions that broadly suppress microglial activity risk impairing 
their essential physiological functions, including synaptic pruning, neurogenesis regulation, and clearance 
of cellular debris [490–492].

Adding further complexity, regional heterogeneity in microglial phenotypes, such as differences 
between striatal and cortical microglia in PD, can influence treatment responses and must be carefully 
considered in the design of targeted therapies. Yet, this heterogeneity may also offer a therapeutic 
advantage, enabling interventions to selectively modulate the most disease-relevant microglial populations 
in specific brain regions.

New precision-targeted strategies are emerging to address these limitations. Advances in single-cell 
RNA sequencing and spatial transcriptomics are revealing microglial subtypes with distinct molecular 
signatures that could be selectively modulated. Innovative drug delivery systems such as lipid 
nanoparticles and BBB–penetrant vectors are enhancing the feasibility of glia-specific interventions [493, 
494].

In conclusion, our evolving understanding of microglial biology, from simplistic inflammatory 
mediators to dynamic regulators of CNS homeostasis, represents a paradigm shift in neurodegenerative 
disease research. Therapeutic strategies aimed at reprogramming microglia toward neuroprotective 
phenotypes offer a novel and potentially transformative approach, particularly in early disease stages when 
neuronal loss may still be preventable. While significant challenges remain, the convergence of advanced 
molecular tools, improved animal models, and innovative clinical trial designs holds considerable promise 
for developing effective microglia-targeted therapies in the coming years.

Translational barriers in microglia-targeted therapies

Limitations in biomarkers, imaging, and trial design illustrate the gap between mechanistic insight and 
clinical application. One of the most pressing limitations is the lack of PET tracers capable of reliably 
distinguishing between neurotoxic (pro-inflammatory) and neuroprotective microglial phenotypes in vivo. 
Current imaging approaches predominantly detect general microglial activation, without resolving the 
functional diversity that underpins their dualistic roles. The development of tracers that target phenotype-
specific markers, such as those associated with trophic factor release, phagocytic function, or anti-
inflammatory signaling, would represent a major step forward in evaluating therapeutic efficacy and 
disease progression.

Equally crucial is the identification of robust, translatable biomarkers of neuroprotective microglia in 
the human brain. While preclinical models have yielded valuable insights into microglial heterogeneity, 
many markers defined in rodent systems [e.g., arginase 1 (Arg1) or rodent-specific chitinase-like protein 
(Ym1)] have limited expression or different regulation in human microglia. The lack of conserved markers 
hampers clinical assessment and underscores the need for human-centric validation pipelines that 
integrate single-cell transcriptomic and imaging datasets with body fluid biomarkers.

Moreover, the plasticity and context-dependency of microglial states pose an inherent challenge. A 
phenotype beneficial in one disease stage or anatomical region may prove deleterious in another. This 
complexity necessitates precision targeting strategies that consider spatial and temporal factors, rather 
than generalized immunomodulation. Clinical trial design must account for this heterogeneity, possibly 
incorporating patient stratification based on imaging, genetic risk factors (e.g., APOE or TREM2 variants), or 
peripheral cytokine profiles.
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Finally, the dynamic crosstalk between microglia and other CNS cell types, including astrocytes, 
neurons, and endothelial cells, complicates the isolation of microglia-specific therapeutic effects. It remains 
difficult to discern whether observed benefits stem from direct modulation of microglia or secondary 
interactions within the neuroimmune milieu. Hence, combining microglial targeting with supportive 
interventions on neuronal or astrocytic function may ultimately be necessary to achieve lasting 
neuroprotection.

Together, these challenges highlight the need for refined tools, integrative methodologies, and cautious 
interpretation of data when advancing microglia-targeted therapies into clinical use.

Biomarkers of neuroprotection: selection and qualification
Ultimately, the success of any neuron-, microglia-, or astrocyte-based intervention hinges on reliable 
outcome measurement tools. Biomarkers serve as the bridge between mechanistic discovery and clinical 
translation, enabling researchers to assess safety, efficacy, and disease modification. Building upon the 
preceding analysis of cellular targets such as astrocytes and microglia, this section shifts the perspective 
toward biomarkers of neuroprotection. While therapeutic strategies outline what to target, biomarkers 
determine how to detect, monitor, and qualify disease processes and treatment effects. Conditions such as 
systemic lupus erythematosus (SLE) are not included, despite their potential to cause pre-senile dementia 
through mechanisms like autoimmune antibodies targeting sodium channels on glutamatergic neurons 
[495]. It is excluded because it is primarily a systemic autoimmune disease with a known etiology and a 
typically episodic clinical course. In contrast, we review biomarkers of several synucleinopathies, despite 
their multisystem involvement, since their underlying causes remain largely unknown, and their clinical 
progression is characteristically insidious.

Dementias of primarily non-cerebral origin are not covered in detail, as their biomarker profiles are 
distinct, well-characterized, and seldom controversial. Among these are infectious etiologies such as 
neurosyphilis [496], chronic human immunodeficiency virus-induced encephalitis (HIVE) [497], and 
potentially emerging links to herpes simplex virus [498]. These infections, while historically significant 
contributors to global dementia burden, remain clinically relevant even in developed countries. 
Nonetheless, with the exception of certain viral encephalitis and prion disorders [499], such conditions are 
not fundamentally enigmatic and are less central to current neurodegeneration-focused drug development 
efforts compared to diseases like AD or frontotemporal lobar degeneration.

Likewise, vascular contributions to cognitive decline account for approximately 25% of all dementia 
cases [500], yet are supported by robust diagnostic frameworks, including neuroimaging (e.g., MRI), and 
standardized treatment protocols. Other secondary causes of cognitive impairment, including genetic 
disorders (e.g., Wilson’s disease), autoimmune conditions (e.g., SLE), chronic epileptic syndromes, 
repetitive head trauma (e.g., chronic traumatic encephalopathy) [501], and neoplastic processes or their 
treatments (e.g., chemotherapy-related cognitive impairment or “brain fog”) [502], are similarly well 
defined. In each of these, diagnostic biomarkers are well established and typically integrated into 
differential diagnosis when clinically suspected.

Biomarkers are measurable biological characteristics that reflect physiological states or pathological 
processes. In the context of common senile dementias, where underlying etiologies are often elusive, a wide 
array of potential biomarkers has emerged, leading to multiple frameworks for their classification. They 
may be organized by source (e.g., fluid-based from blood or CSF, or neuroimaging-based) or by intended 
use, such as for diagnosis, prognosis, prediction, or patient stratification. Each classification framework 
captures diverse biomarker types relevant to the spectrum of neurodegenerative disorders.

This section will adopt a hierarchical approach, beginning with molecular-level indicators, e.g., 
genomics and proteomics, and progressing toward higher-order systems, including cognitive and 
behavioral assessments and emerging modalities such as radioligand-based imaging of synaptic density 
[503–505]. The section will conclude by underscoring the considerable and often underrecognized 
potential of recent metabolomics advances to transform biomarker discovery.
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Framework for biomarker classification

Having established the general scope of biomarkers, we next consider their functional classification. This 
framework links directly to the therapeutic challenges described earlier: selecting the right patients, proper 
stratification, ensuring safety during intervention, and monitoring treatment efficacy.

Biomarkers can be classified according to the function they serve in clinical practice and therapeutic 
development. Among these, selection biomarkers represent a critical objective in the field of 
neurodegenerative disease drug development. This is especially true given that many emerging 
therapeutics are costly, may entail significant logistical burdens for patients and caregivers, and, 
importantly, carry substantial risks of adverse effects. Identifying which patients are most likely to benefit 
from a given treatment, while avoiding harm in others, is central to optimizing both clinical outcomes and 
resource allocation.

Janet Woodcock, during her tenure as Chief Medical Officer at the U.S. FDA, helped formalize the 
categorization of biomarkers for regulatory and clinical purposes. These categories include safety 
biomarkers, selection biomarkers, and response biomarkers [506]. However, the main challenges in 
diseases related to neurodegeneration are defining optimal biomarkers for diagnosis and identifying 
biomarkers for assessing neuroprotection in humans.

Selection biomarkers

Within this framework, selection biomarkers are particularly important. Just as astrocyte and microglial 
modulation must be targeted with precision, clinical trials must recruit the right patients through robust 
diagnostic enrichment. In the realm of neurodegenerative disease, where definitive diagnostic tests are 
often lacking, diagnostic biomarkers play a pivotal role, not only in clinical practice but also as selection and 
stratification tools for clinical trials. In this context, their function often overlaps with that of selection 
biomarkers, as they help enrich trial populations with participants who are more likely to harbor the target 
pathology. This enrichment is crucial for maximizing the likelihood of detecting therapeutic effects and for 
avoiding the inclusion of patients unlikely to benefit from the intervention.

For instance, individuals with cognitive impairment due to unrelated conditions, such as neurosyphilis, 
HIV-associated encephalopathy, or neurocysticercosis, would not plausibly respond to anti-amyloid 
therapies. Diagnostic biomarkers thus serve to exclude such cases, preventing confounding and improving 
the interpretability of trial results. In this way, the traditional distinction between diagnostic and selection 
biomarkers becomes blurred. Although conceptually distinct, in practice, many biomarkers used in trials 
perform both roles simultaneously.

Given the substantial resource demands of drug development, large sample sizes, extended trial 
durations, and the financial and physiological burden of certain treatments (e.g., monoclonal antibodies 
targeting Aβ), it is ethically and scientifically imperative to identify patients for whom benefit is plausible 
and to avoid unnecessary exposure of those unlikely to respond.

Safety biomarkers

Beyond selection, safety biomarkers address another parallel concern. Therapies acting on complex glial 
networks carry inherent risks, and amyloid-related imaging abnormalities (ARIAs) exemplify how 
biomarker-guided vigilance can prevent harm [507]. Abnormalities range from asymptomatic imaging 
findings to severe complications such as cerebral hemorrhages [508]. ARIA is believed to result from the 
clearance of Aβ plaques deposited in cerebral vasculature, which may compromise vessel integrity [509]. In 
the early 21st century, when no disease-modifying treatments for AD were available, diagnostic biomarkers 
with mechanistic specificity, such as CSF Aβ1–42/tau ratios or amyloid PET imaging, began to serve a dual 
role as selection biomarkers in clinical trials. They enabled enrollment of patients most likely to harbor the 
target pathology. However, the absence of curative therapies at that time complicated regulatory 
qualification of these biomarkers. Without effective treatments, it is still difficult to demonstrate that such 
biomarkers could reliably predict therapeutic efficacy or outcomes.
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Response biomarkers

Response biomarkers complete the triad. While selection and safety establish who to treat and how to 
minimize risks, response biomarkers evaluate whether the intervention produces meaningful benefit, 
mirroring how preclinical glial modulation must be validated through functional readouts. Among the most 
prominent macroscopic biomarkers are neuropsychological test batteries, which aim to quantify behavioral 
and cognitive function. Historically, these tests have served as key diagnostic tools in neurodegenerative 
diseases. Alongside observable behavioral declines, such as a loss of self-care abilities, they continue to be 
the primary outcome measures recognized by regulatory agencies for assessing therapeutic efficacy. In 
cases of clinically diagnosed dementia, improvements in neuropsychological test scores are regarded with 
high face validity and regulatory acceptance, despite their inherent within-subject variability, even among 
cognitively healthy individuals.

Dementia is characterized by deficits in episodic memory followed by difficulties in problem-solving, 
decision-making and visuospatial deficits, such as difficulties recognizing faces, navigating familiar 
environments, or judging distances [510]. Mini-Mental State Examination (MMSE), developed by Folstein, 
Folstein, and McHugh [511], takes advantage of the impairment in memory and executive functions.

Neuropsychological evaluations are essential not only for diagnosis but also for tracking disease 
progression or monitoring treatment response over time. They help identify individual cognitive strengths 
and weaknesses, enabling clinicians to craft personalized treatment strategies aimed at mitigating cognitive 
deficits and promoting independence. However, there is natural variability in performance across 
individuals, and ceiling/floor effects that constrain the dynamic range of assessment [512].

Certain tasks, such as the Stroop Task and the Wisconsin Card Sorting Test, have demonstrated strong 
compatibility with neuroimaging studies, reinforcing their validity even when used outside imaging 
paradigms [513].

Tests evaluating visuospatial and constructional abilities assess visual perception and spatial 
reasoning, skills crucial for understanding the relationships between objects in space. Examples include 
copying complex figures or assembling block designs. The Rey-Osterrieth Complex Figure Test is widely 
used to assess these domains, as is the Bender Line Orientation Test, which has been employed in 
neuroimaging research to explore regional cerebral blood flow and metabolism (see [514, 515]). The 
California Verbal Learning Test (CVLT) is widely employed to assess verbal learning and memory [516], 
while the Boston Naming Test (BNT) evaluates confrontation naming ability [517]. These behavioral 
assessments can serve as diagnostic biomarkers in neurodegenerative conditions. However, due to their 
analog nature and limited dynamic range, their utility as response biomarkers, those that track progression 
or treatment response, is more constrained.

One of the most frequently cited behavioral biomarkers in PD is the University of Pennsylvania Smell 
Identification Test (UPSIT), developed by Richard Doty [518]. Hyposmia, or a diminished sense of smell, 
may precede the onset of motor symptoms by 10 to 20 years, making it a valuable early diagnostic 
indicator. However, the performance on this test tends to be dichotomous, and there is limited evidence 
that olfactory function continues to decline as the disease progresses, possibly because olfactory 
dysfunction appears at very early stages and rapidly approaches a floor effect, leaving little room to capture 
further decline.

In contrast, the Grooved Pegboard Test, a commonly used measure of fine motor coordination and 
dexterity, demonstrates a broader dynamic range and has been shown to decline progressively with disease 
worsening, making it a more reliable response biomarker in longitudinal studies [512].

Molecular biomarkers: genomics

The presentation of cognitive impairment in relatively young individuals necessitates a comprehensive 
diagnostic evaluation, as numerous potentially treatable causes must be considered. When there is a family 
history suggestive of early-onset AD (EOAD), genetic testing becomes particularly relevant. In such cases, 
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screening for mutations in three well-characterized autosomal dominant genes is warranted: APP (coding 
for APP), PSEN1 (coding for presenilin 1), and PSEN2 (coding for presenilin 2) [519, 520]. Although 
mutations in these genes are often devastating for affected individuals and families, they account for only a 
small fraction of total dementia cases. There are other, perhaps more common, genetic variants associated 
with the risk of developing AD—including the late onset form of the disease (LOAD)—such as ApoE4 [521, 
522] or those identified more recently (e.g., mutations in CD36 [523], see [524] for review). Some of these 
would likely be found at increased frequency in any population of patients with AD, thus potentially 
constituting “biomarkers” (perhaps even “marking” characteristic AD endophenotypes in some cases) 
[525]. They are not strictly specific to AD, though [526]. Genomic biomarkers are considered here as 
providing merely a foundation for identifying inherited risks that intersect with broader (and clinically 
more relevant) proteomic and fluid markers. Consequently, this review will not address them in detail, 
focusing instead on biomarkers with broader relevance to assess neuroprotection.

Molecular biomarkers: proteomics

Proteomics, the study of protein expression, structure, and function, is central to biomarker discovery in 
dementia research. Though inherently microscopic in scale, this field is highly consequential, particularly 
because modern drug development largely revolves around identifying compounds that target specific 
proteins.

Even in the absence of clear etiologic understanding, proteomic analyses have yielded valuable insights 
into neurodegenerative disease processes. The depth and breadth of proteomic research far exceed the 
scope of this review [527]; we highlight here only proteins that are already well-integrated into diagnostic 
and therapeutic paradigms for common neurodegenerative diseases, while directing readers to other 
comprehensive sources [528, 529].

Interest in amyloid proteins has fluctuated since Dr. Alois Alzheimer’s original descriptions of 
extracellular plaques in the late 19th century [530]. He also noted neurofibrillary tangles, now known to 
consist of tau proteins, though it was Emil Kraepelin who championed the idea that amyloid plaques were 
the defining pathological hallmark of what came to be known as AD. This view dominated for nearly a 
century.

Efforts to detect these protein abnormalities in vivo have continued since the seminal work of George 
Glenner and Cai’ne Wong in the 1980s, who successfully isolated and sequenced the Aβ peptide from 
cerebral amyloid angiopathy [531]. Since then, amyloid and tau proteins have been sought in numerous 
biological media, including CSF, blood, urine, saliva, and skin, with varying degrees of success. More 
recently, noninvasive imaging techniques have enabled the detection of these proteins directly within the 
living brain, marking a major milestone in the field. Proteins not only embody disease pathology but also 
flow into CSF and plasma, linking proteomics directly with fluid-based measures.

Body fluid biomarkers

Biomarkers derived from CSF and, more recently, blood plasma, are at the forefront of research in 
neurodegenerative diseases. Offering insights into brain pathology through minimally invasive methods, 
these markers are essential not only for early diagnosis and stratification but also for disease monitoring, 
crucial elements in both clinical care and trial design.

CSF remains a rich source of biomarkers, particularly in AD, where the core trio, Aβ1–42, 
phosphorylated tau (p-tau), and total tau (t-tau), form the basis of the ATN framework. This system 
categorizes biomarkers as indicators of amyloid pathology (A), tau pathology (T), and neurodegeneration 
(N).

Although technical hurdles once limited blood-based detection, innovations like single-molecule array 
(Simoa) and mass spectrometry have enabled plasma quantification of key biomarkers such as the 
Aβ1–42/Aβ1–40 ratio, p-tau18, p-tau217, and NfL, which presumptively reflect central pathology with 
increasing accuracy. Notably, biochemical parameters in plasma are emerging as tools for assessing disease 
progression rate in AD [532, 533].
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Metabolomics and multivariate biomarker models

Yet proteins alone capture only part of the picture. To monitor dynamic shifts in cellular metabolism, 
closely tied to astrocytic and microglial function, metabolomics offers a complementary and more sensitive 
approach. The systematic profiling of small molecules reflecting dynamic metabolic states is emerging as a 
powerful tool in the search for biomarkers in neurodegenerative diseases. Unlike genomic or proteomic 
approaches that capture upstream pathology, metabolomics reveals real-time functional alterations, which 
may precede structural brain changes, particularly relevant in conditions such as AD.

Recent technological advances allow quantification of over 600 metabolites from minimal sample 
volumes (10–20 µL), using high-throughput commercial platforms like Biocrates MxP® Quant 500 (www.
biocrates.com). These enable reproducible detection across a wide biochemical range (amino acids, bile 
acids, fatty acids, biogenic amines, indole derivatives), facilitating both discovery and translational 
research.

A major strength of metabolomics lies in multivariate modeling. Rather than focusing on individual 
biomarkers, disease-specific patterns of multiple metabolites can enhance diagnostic precision. For 
instance, a panel of four metabolites can distinguish between aqueous humor samples from glaucoma 
patients, type 2 diabetes patients, and healthy controls with 95% accuracy using a linear model. However, a 
nonlinear model based on only three of these metabolites can achieve 100% accuracy [534].

Similar multivariate approaches applied to plasma in AD have yielded panels of four to five 
metabolites, such as 5-aminovaleric acid, carnosine, cholic acid, and hypoxanthine, that classify cases with 
over 75% accuracy and ~80% sensitivity/specificity. Importantly, these models often integrate both up- 
and down-regulated compounds, emphasizing the diagnostic value of relative metabolic balance over 
absolute concentration shifts. Even under stringent cross-validation, such as leave-one-out testing, these 
panels retain robust discriminatory power [535].

Further extending its clinical potential, metabolomics can differentiate not only patients from healthy 
individuals but also between diseases. Biocrates platforms have the potential of to classify AD, PD, MS, and 
systemic conditions by applying multivariate metabolic signatures obtained from easily accessible biofluids, 
including plasma and tears. Neurodegenerative diseases may present overlapping clinical or imaging 
profiles but differ in pathways such as amino acid metabolism, bile acid homeostasis, lipid remodeling, and 
oxidative stress.

Validation strategies, split-sample testing, permutation analyses, and receiver operating characteristic 
(ROC) curves, have confirmed the discriminatory capacity of small metabolite panels (4–6 compounds), 
with many models reaching area under the curve (AUC) values greater than 0.85. The Conformité 
Européenne - In Vitro Diagnostic (CE-IVD) mark, a regulatory framework issued by the European Union, 
ensures that commercial kits meet standards for traceability and reproducibility, thereby enabling clinical 
standardization across labs.

Altogether, metabolomics offers a promising complement to existing biomarker strategies, supporting 
early diagnosis, differential classification of dementia subtypes, and possibly therapeutic stratification, 
provided robust algorithms and well-characterized cohorts are employed.

Neuroimaging markers

While omics highlight molecular and metabolic alterations and provide multivariate models of disease risk, 
imaging offer a complementary perspective by directly visualizing structural and functional brain changes, 
thereby bridging biochemical signals with anatomical correlates.

In the context of dementia and cognitive decline, it is crucial to recognize that many medical conditions 
can mimic or contribute to dementia-like symptoms. Conventional toxicology screenings and clinical 
imaging techniques can help rule out common causes, such as heavy metal poisoning [536] or multi-infarct 
dementia [537]. While many diagnostic findings lack specificity, they can still be sensitive enough to 
indicate that the underlying issue is not an idiopathic neurodegenerative disorder.

http://www.biocrates.com
http://www.biocrates.com
http://www.biocrates.com
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In the evaluation of cognitive decline, imaging remains a cornerstone for ruling out secondary causes 
and guiding differential diagnosis. Techniques such as MRI can detect structural abnormalities, including 
ARIAs, which are relevant prior to initiating anti-amyloid therapies [538]. Incidence of ARIAs in clinical 
trials of monoclonal antibodies has reached up to 40% in some cohorts [539], underscoring the need for 
appropriate imaging protocols.

Complementary efforts by consortia such as the Radiological Society of North America’s Quantitative 
Imaging Biomarker Alliance (QIBA) [540] and the European Imaging Biomarker Alliance (EIBALL) [541] 
have produced harmonized frameworks for quantifying amyloid plaque burden through functional imaging.

Proteomic imaging research has primarily focused on amyloid, tau, and α-synuclein. Isoforms of tau (3-
repeat and 4-repeat) help distinguish between disorders such as progressive supranuclear palsy, 
corticobasal degeneration, and Pick’s disease, while α-synuclein pathology supports the diagnosis of PD and 
dementia with Lewy bodies (DLB) [542]. Highly sensitive detection technologies, such as Single Molecule 
Array (SIMOA) enable quantification of low-abundance proteins in fluids like CSF and plasma. Using 
antibody-coated microbeads and fluorescence-based detection, SIMOA can detect femtomolar 
concentrations of Aβ and tau, making it suitable for tracking disease progression or therapeutic response 
[543–545].

The CSF Aβ1–42/Aβ1–40 ratio remains one of the most robust biomarkers for AD. Because Aβ1–42 levels 
decline as the peptide aggregates into plaques, while Aβ1–40 remains stable, the ratio corrects for pre-
analytical variability and enhances diagnostic accuracy [546, 547]. This metric aligns closely with amyloid 
PET imaging, with some studies reporting sensitivities and specificities up to 96% and 91%, respectively 
[548].

Blood-based assays are gaining traction as scalable and less invasive alternatives. Plasma Aβ1–42/Aβ1–40 
ratios show good correlation with amyloid PET status, achieving AUC values around 0.82–0.84 [544]. A 
recent regulatory milestone was the FDA’s approval of the Lumipulse G test in May 2025, which measures 
the plasma pTau217/Aβ1–42 ratio to aid in AD diagnosis [31]. In clinical validation, this test achieved 91.7% 
concordance with PET-confirmed amyloid positivity and 97.3% concordance with PET negativity, with only 
~20% of results deemed indeterminate. This provides a viable alternative when imaging is inaccessible or 
contraindicated.

Nonetheless, as with all biomarkers, real-world sensitivity and specificity remain context-dependent, 
and blood-based assays like Lumipulse G are best used as complements, not replacements, to 
comprehensive clinical assessment.

Peripheral biomarkers: skin biopsies and fibroblasts

Beyond brain imaging, attention has increasingly shifted toward peripheral tissues, where accessible 
biopsies such as skin samples provide a minimally invasive avenue to detect hallmark proteinopathies and 
extend biomarker discovery beyond the CNS.

Skin biopsies are an emerging and promising tool for diagnosing dementias, particularly those 
classified as synucleinopathies [549]. The rationale is based on the peripheral manifestation of 
neurodegenerative pathology, specifically, the accumulation of misfolded proteins such as phosphorylated 
α-synuclein (P-SYN) in small nerve fibers of the skin. Compared to traditional brain biopsies or lumbar 
punctures for CSF analysis, skin biopsies offer a minimally invasive, accessible, and well-tolerated 
diagnostic alternative.

The synucleinopathies, including PD, DLB, multiple system atrophy (MSA), and pure autonomic failure 
(PAF), are unified by abnormal deposits of P-SYN within the autonomic and somatosensory fibers of the 
skin. These aggregates can be detected via immunohistochemistry or immunofluorescence. In large 
multicenter studies, such as the Synuclein-One Study, skin P-SYN detection has shown diagnostic 
sensitivities up to 93% for PD and nearly 100% for PAF. Specificity is also high, as healthy individuals do 
not appear to exhibit detectable P-SYN aggregates in cutaneous nerves [550, 551], though some clinical 
features alone may distinguish these patients from controls.
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There is also preliminary evidence suggesting that hallmark proteins of AD, such as p-tau and Aβ, may 
be detectable in skin tissue. Reports have documented scattered p-tau aggregates in epidermal and dermal 
compartments, including nerve terminals and fibroblasts, of AD patients, as well as Aβ immunoreactivity 
within the dermis [552, 553]. While not yet definitive, these findings open the door to potential skin-based 
diagnostics for tauopathies and AD.

Commercial development has followed suit. One example is the DISCERN™ test (SYNAPS Dx, Rockville, 
MD), a fibroblast-based skin assay designed to identify AD pathology. DISCERN™ involves culturing 
fibroblasts from a skin biopsy and assessing multiple molecular signatures. Published reports suggest that 
it can achieve sensitivity and specificity values close to 100% for detecting AD, even in the presence of 
comorbid neurodegenerative conditions [551, 553, 554].

Less studied is the observation that fibroblasts from AD patients show altered expression of EAAT1 
amino acid transporter, with the degree of alteration correlating with dementia severity [555]. This finding 
warrants further investigation to determine whether peripheral expression of this transporter could serve 
as a useful biomarker for neurodegenerative diseases.

Together, these findings suggest that peripheral biomarkers have the potential to become a valuable 
diagnostic aid across multiple forms of dementia, offering a rare blend of accessibility, biomarker 
specificity, and emerging commercial viability.

Implications for research and practice

These peripheral approaches, when combined with molecular, imaging, and behavioral measures, 
underscore the need to evaluate biomarkers not in isolation but as part of an integrative framework, setting 
the stage for broader implications in both research and clinical practice.

Neuropsychological assessments serve as foundational tools in the diagnosis and monitoring of 
neurodegenerative diseases. While tests such as CVLT, BNT, and UPSIT offer valuable diagnostic insight, 
particularly in early or prodromal stages, their limited dynamic range and susceptibility to ceiling or floor 
effects constrain their utility as response biomarkers. In contrast, tasks with broader performance spectra, 
such as the Grooved Pegboard Test, provide greater sensitivity to disease progression and therapeutic 
response. As the field moves toward precision medicine, refining and integrating behavioral biomarkers 
with imaging and molecular data will be essential for capturing the nuanced trajectories of cognitive and 
motor decline, ultimately improving patient stratification, treatment evaluation, and clinical outcomes.

The convergence of diverse biomarker modalities illustrates both the opportunities and the limitations 
of current strategies. Yet, as the field seeks to move from detection toward intervention, the central 
challenge becomes how these biomarkers can reliably inform the design, assessment, and validation of 
neuroprotective therapies. This transition introduces the conceptual and methodological hurdles addressed 
in the next section.

Challenges in framing and assessing neuroprotection
Despite decades of research and a growing repertoire of molecular targets and candidate therapeutics, the 
field of neuroprotection remains hindered by persistent conceptual ambiguity. The term “neuroprotection” 
is widely employed across preclinical and clinical contexts, but it lacks a clear, universally accepted 
operational definition. While some interventions, such as the use of caspase inhibitors that directly prevent 
apoptotic cell death [556, 557], are readily classified as neuroprotective, others, including anti-
inflammatory agents or metabolic modulators, have more systemic or indirect effects, rendering their 
categorization less straightforward.

This definitional vagueness poses significant challenges to the development of objective and 
reproducible criteria for evaluating efficacy. It also contributes to heterogeneity in trial designs, 
encompassing a broad array of endpoints, mechanisms of action, and timescales. This variability 
complicates the comparison of results across studies and impairs the reliability of meta-analyses [558–
564]. In the absence of a unified conceptual framework, distinctions between neuroprotection, 
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symptomatic treatment, and disease modification often become obscured, risking the conflation of 
mechanistic plausibility with demonstrable clinical benefit.

In translational neuroscience, reliably demonstrating neuroprotection in humans remains particularly 
difficult, not only due to technical limitations but also because of this enduring conceptual imprecision. 
Neuroprotection is generally defined as the use of strategies to prevent, delay, or reverse neuronal injury or 
dysfunction caused by insults such as ischemia, trauma, or neurodegenerative processes. These strategies 
may involve diverse mechanisms in glial cells and neurons, including inhibition of apoptosis, reduction of 
excitotoxicity, suppression of neuroinflammation, enhancement of mitochondrial function, or promotion of 
neuronal regeneration [565, 566].

Barriers in the translation from bench to bedside

Neuroprotection in practical terms can be only assessed in preclinical studies. In fact, it remains impossible 
in AD to objectively determine whether an intervention provides neuroprotection in clinical settings. No 
validated biomarkers currently exist to confirm neuroprotective effects in patients, and thus, therapeutic 
efficacy is often inferred from cognitive test scores rather than biological indicators of disease modification 
(see [567]).

Despite the growing interest in imaging and proteomic tools, methods such as PET or CSF tau 
quantification do not reliably correlate with neuroprotection. Accordingly, preclinical models, mostly 
rodent-based, remain the main platform for assessing neuroprotective mechanisms.

Beyond conceptual ambiguities, translational neuroscience is confronted by a striking disconnect 
between preclinical success and clinical efficacy. A landmark analysis revealed that while approximately 
86% of animal studies with positive findings proceed to human trials, fewer than 5% of those interventions 
achieve regulatory approval [568]. This dramatic attrition underscores not only methodological deficits, 
such as inadequate randomization, absence of blinding, and insufficient statistical power, but also systemic 
issues in model validity and disease representation.

Most preclinical studies are conducted in young, healthy, genetically homogeneous male rodents, far 
removed from the heterogeneity of aging human populations with comorbidities such as hypertension, 
diabetes, or cerebrovascular disease. These biological and environmental discrepancies limit external 
validity and severely constrain the generalizability of preclinical findings to real-world clinical settings. 
Moreover, simplified experimental paradigms often fail to capture the complex, multifactorial nature of 
human neurodegeneration, including chronic inflammation, metabolic dysfunction, and cumulative injury 
[569–571].

Together, these limitations reveal a fundamental weakness in the translational pipeline: Preclinical 
models, often biologically reductionist and poorly representative of human pathology, remain inadequate to 
support the development of interventions with reproducible and clinically relevant neuroprotective effects. 
It is increasingly doubtful that the expanding repertoire of animal models, regardless of their genetic or 
pathological sophistication, will lead to meaningful breakthroughs in this specific area. On the contrary, 
their proliferation may represent a conceptual burden, further distancing experimental outcomes from 
clinical applicability.

Biological diversity and constraints of preclinical biomarkers

Beyond the bench-to-bedside gap, another critical challenge arises from the limited biological diversity 
represented in preclinical models. The vast majority of animal studies are conducted without considering 
biological variables such as age, sex, and comorbidities, including hypertension, diabetes, and metabolic 
syndrome. These factors are not only prevalent but often pivotal in determining disease progression and 
treatment response in human neurological populations. Incorporating aged animals or models with 
vascular and metabolic risk factors would more accurately recapitulate the clinical landscape and 
substantially improve the applicability of experimental findings [569, 572–574].
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In stroke research, for example, models that incorporate hypertensive or diabetic phenotypes have 
demonstrated significantly altered responses to neuroprotective interventions compared to normotensive 
controls, underscoring the critical importance of patient-specific biological contexts [575]. Similarly, sex-
specific differences in neuroinflammatory and neuroregenerative responses are increasingly recognized, 
reinforcing the need for sex-balanced study designs [576]. Contrasting sharply with the homogeneity of 
preclinical models, human neuropathology is inherently heterogeneous. Rodent models of stroke typically 
involve highly standardized focal ischemia, whereas clinical presentations vary widely in lesion size, 
location, and accompanying comorbidities. This biological and clinical variability reduces statistical power, 
introduces confounding variables, and may obscure the detection of true neuroprotective effects in trials 
[577, 578].

To address some of these translational gaps, biomarker identification in body fluids has emerged as a 
promising yet still incomplete solution. Among the most studied is NfL, a structural axonal protein that 
increases in CSF and plasma following neuronal injury. NfL elevations have been consistently observed in 
neurodegenerative conditions, stroke, traumatic brain injury, and neuroinflammatory disorders [579–581]. 
However, its lack of specificity remains a major limitation: NfL levels can rise following surgical procedures 
or systemic stress and thus cannot be used in isolation to infer neuroprotective efficacy.

Moreover, while NfL correlates with disease activity and long-term prognosis, it has not yet been 
validated as a surrogate endpoint in clinical trials, limiting its utility in regulatory routes. The qualification 
of biomarkers for drug development is not only a scientific hurdle but also a regulatory one. In the United 
States, the FDA Biomarker Qualification Program was designed to formalize the use of biomarkers in 
therapeutic development, but progress has been slow. Only a handful of biomarkers have been formally 
qualified due to rigorous requirements for analytical validity, clinical relevance, and demonstrated utility 
[582].

A major barrier lies in distinguishing between prognostic, predictive, and surrogate endpoint 
biomarkers. While biomarkers such as NfL can reflect ongoing neurodegeneration, they do not inherently 
predict treatment response. To be accepted as a surrogate endpoint, a biomarker must demonstrate that 
changes in its levels reliably and reproducibly predict clinical benefit across multiple interventions and 
study populations, an evidentiary standard that few neurodegeneration-related markers currently meet 
[583].

The limitations of clinical endpoints further compound the problem. Commonly used scales, such as the 
NIH Stroke Scale or Glasgow Coma Scale, are calibrated for acute neurological deficits but are poorly suited 
to detecting the gradual, molecular-level improvements that characterize many neuroprotective strategies. 
Functional and cognitive assessments provide valuable patient-centered data, but are heavily influenced by 
rehabilitation, neuroplasticity, and compensatory mechanisms, which may mask or confound the specific 
effects of a given intervention [584, 585].

In summary, advancing the field of human neuroprotection demands a multidimensional recalibration, 
spanning conceptual clarity, more representative preclinical models, validated biomarkers, and refined 
clinical endpoints. Regulatory frameworks must evolve in tandem, embracing flexible, data-driven 
approaches that account for the complexity and subtlety of neuroprotective interventions. Without these 
structural reforms, the field risks mistaking molecular promise for therapeutic progress and stalling the 
development of interventions that could meaningfully alter the trajectory of neurodegenerative disease. 
Given these biological and methodological constraints, the field is increasingly turning toward multimodal 
strategies to capture the complexity of neuroprotection.

Multimodal strategies for neuroprotective monitoring

Relying on a single biomarker, whether derived from neuroimaging, biofluids, electrophysiology, or clinical 
scales, has proven insufficient to capture the complexity of neuronal injury and recovery [586, 587]. A 
singular parameter rarely reflects the nuanced interplay between inflammation, metabolism, synaptic 
function, structural damage, and compensatory mechanisms. Instead, comprehensive strategies that 
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integrate diverse streams of biological, functional, and behavioral data are now recognized as essential for 
advancing mechanistic understanding and therapeutic monitoring [588, 589].

This integrative shift (Figure 6) is being propelled by rapid advances in artificial intelligence (AI) and 
machine learning (ML), which have enabled the simultaneous analysis of large, heterogeneous datasets. By 
combining neuroimaging metrics (e.g., cortical thickness, functional connectivity), body fluid biomarkers 
(e.g., NfL, Aβ1–42/tau ratios), genetic variants (e.g., apolipoprotein E, CD36, TREM2), and cognitive/clinical 
profiles, AI-based models can construct multidimensional representations of disease states. These models 
offer powerful tools for identifying latent disease subtypes, modeling progression trajectories, and 
predicting therapeutic responses, capabilities that are crucial for personalizing neuroprotective strategies 
[523, 590–592].

Figure 6. Bridging the translational gap in neuroprotection: from biological diversity to multimodal innovation. Despite 
promising preclinical findings, clinical translation of neuroprotective strategies has been limited by persistent conceptual and 
methodological challenges. Conventional models often overlook biological diversity, reducing translational validity. Emerging 
approaches advocate for a paradigm shift, integrating multimodal biomarkers, such as neurofilament light chain (NfL), glial 
fibrillary acidic protein (GFAP), tau protein (Tau), with in vivo imaging (fMRI, and PET), AI-driven patient stratification and 
adaptive trial designs. Advancing neuroprotection requires greater conceptual clarity, inclusivity, and technological innovation to 
overcome current barriers. Created in BioRender. Ulrich, A. (2025) https://BioRender.com/r1pojkk.

GFAP has recently gained prominence as a sensitive biomarker of astroglial activation in AD. Elevated 
GFAP concentrations in plasma and CSF have been consistently associated with early amyloid 
accumulation, cognitive decline, and overall disease severity, even during preclinical stages. Introducing 
GFAP, a glial component, into biomarker panels historically focused on neuronal injury, enhances the 
biological resolution of neurodegenerative profiling. Recent studies demonstrate that integrating GFAP 
with NfL and Aβ/tau measures significantly improves diagnostic precision and phenotypic stratification, 
particularly when applied within ML–based frameworks for early detection and longitudinal monitoring of 
disease progression [593, 594].

https://BioRender.com/r1pojkk
https://BioRender.com/r1pojkk
https://BioRender.com/r1pojkk
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Beyond protein-based biomarkers, metabolomics appears as a powerful tool to broaden our 
understanding of neurodegenerative disorders. Unlike reductionist approaches centered on single 
metabolites, recent studies emphasize the need to assess panels of interrelated metabolites, which may 
better capture the complex biochemical alterations underlying disease progression [535]. The translational 
imperative for multimodal strategies becomes particularly evident in complex clinical contexts such as 
traumatic brain injury, where the cascade of secondary insults, excitotoxicity, inflammation, oxidative 
stress, and delayed neurodegeneration demands comprehensive and patient-specific interventions. As 
reviewed by Buccilli et al. [595], neither pharmacological agents nor regenerative therapies alone can 
address the multifactorial nature of traumatic brain injury. Instead, therapeutic efficacy increasingly 
depends on integrated protocols, monitored through biomarkers that reflect dynamic changes across 
molecular, cellular, and network levels.

From a methodological standpoint, this shift is supported by advanced statistical and computational 
techniques capable of handling heterogeneous data. Bhaumik and colleagues [596] demonstrated that 
Bayesian modeling integrating both structural and functional MRI outperformed univariate approaches in 
detecting neuroprotective effects, especially in small or heterogeneous samples. This underscores the value 
of combining data streams, not only for diagnostics but also for increasing the sensitivity of intervention 
monitoring.

Similarly, multidomain preventive trials such as the FINGER study (Finnish Geriatric Intervention 
Study to Prevent Cognitive Impairment and Disability) have adopted a multimodal approach that combines 
dietary guidance, physical activity, cognitive training, and vascular risk management. These interventions 
are assessed through a range of outcome measures, including neuroimaging, blood biomarkers, and 
comprehensive cognitive batteries. The FINGER study demonstrated that such integrated strategies can 
significantly slow cognitive decline in older adults at risk [597]. Building on these findings, the World-Wide 
FINGERS initiative has been launched as an international extension of the original Finnish network, aiming 
to replicate and adapt the protocol across diverse countries while maintaining methodological 
harmonization [598].

Another emerging pillar of neuroprotection involves NIBS, particularly tDCS and repetitive transcranial 
magnetic stimulation (rTMS). These techniques offer the possibility of modulating network excitability, 
protein aggregation, and glial function without a pharmacological burden. A growing body of evidence 
suggests that NIBS may delay disease progression in Alzheimer’s and Parkinson’s diseases by targeting 
synaptic plasticity and neuroinflammation. Guidetti and colleagues [599] highlight preclinical findings 
consistent with disease modification, though clinical trials remain in early phases.

Neuroimaging, particularly combining structural MRI, functional MRI, and magnetic resonance 
spectroscopy, has enhanced sensitivity to early alterations in network connectivity, microstructural 
integrity, and metabolic function, even in AD animal models [600]. In clinical populations, approaches 
combining cortical thickness (structural MRI), amyloid-PET, tau-PET, and white matter lesion burden may 
predict domain-specific cognitive decline with precision [601, 602]. In PD, pairing novel markers, such as 
seed amplification assays and extracellular vesicle cargo profiling, with specialized imaging modalities (e.g., 
neuromelanin-sensitive MRI, susceptibility-weighted imaging for iron deposition) has yielded superior 
diagnostic accuracy and staging resolution [603, 604]. These fusion techniques not only improve detection 
but also enable mechanistic stratification of participants for targeted therapeutic interventions.

Taken together, these converging lines of evidence reinforce a central conclusion: No single modality 
can sufficiently capture the complexity of neurodegeneration or reliably measure neuroprotection in 
humans. Only by integrating molecular, cellular, systems-level, and behavioral data, analyzed with AI and 
interpreted within rigorous ethical frameworks, can the field realistically design robust clinical trials and 
develop interventions that are both mechanistically grounded and clinically effective. The imperative is 
clear: Neuroprotection in the 21st century must be multimodal, multidisciplinary, and multidimensional.
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Artificial intelligence, digital biomarkers, and responsible innovation

Building on the multimodal approaches, recent advances in AI and digital health are reshaping how disease 
markers are collected, analyzed, and interpreted. A multidimensional strategy would enhance both 
diagnostic and prognostic capabilities, offering a more integrative view of neurodegenerative 
pathophysiology. The real challenge ahead is to deploy multi-omic profiling in well-characterized and 
sufficiently powered cohorts, enabling the identification of robust biomarker combinations that guide 
diagnosis, prognosis, and therapeutic response in chronic neurodegenerative diseases.

In parallel, digital biomarkers, derived from continuous, real-world data captured via smartphones, 
wearable devices, and ambient sensors, have opened new avenues for unobtrusive, high-frequency 
monitoring of neurological functions. Features such as gait dynamics, speech patterns, sleep architecture, 
motor variability, and keystroke latency can be passively and longitudinally tracked to identify subtle 
deviations from individual baselines. In PD, for instance, gait parameters derived from smartphone 
accelerometry have shown promising diagnostic accuracy, while speech-based algorithms are under 
investigation for the early AD detection [605–607]. However, an important caveat remains: Many of these 
digital signals are more reflective of symptomatic fluctuations, often influenced by medication or contextual 
factors, rather than direct markers of disease progression or underlying pathology. This raises questions 
about their standalone utility for tracking neurodegenerative trajectories over time.

ML algorithms, such as convolutional neural networks (CNNs), random forests, and ensemble methods, 
are increasingly applied to neuroimaging data from large consortia like the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI). ADNI has standardized data acquisition across more than 60 sites, covering 
structural MRI, PET imaging, CSF biomarkers, genomic information, and neuropsychological assessments. 
This initiative has enabled the longitudinal tracking of biomarker trajectories and the development of 
composite endpoints that are gaining acceptance among regulatory agencies for clinical trial evaluation 
[608]. In parallel, high-throughput and automated feature extraction techniques from structural and 
functional MRI are revealing complex biomarker signatures predictive of disease onset, progression, and 
treatment response. Notably, Vinukonda and colleagues [609] demonstrated that supervised classifiers 
trained on MRI data significantly outperformed traditional statistical methods in identifying early-stage AD.

Importantly, AI and ML offer powerful tools for patient stratification and for accounting for 
confounding factors such as overdiagnosis and polypharmacy. Within the framework of clinical trial design, 
predictive modeling based on imaging, body fluid biomarkers, genetics, and digital signals can enhance 
participant selection, identify “fast progressors” or treatment-responsive subgroups, and enable real-time 
adaptive modifications to trial parameters. Moreover, digital biomarkers may serve as flexible endpoints, 
capable of capturing meaningful physiological changes beyond the limits of traditional, static scoring 
systems. Collectively, these innovations hold the potential to reduce required sample sizes, shorten trial 
durations, and improve statistical power, thus addressing some of the most persistent limitations in the 
development and validation of neuroprotective therapies [610].

A critical milestone in the field would be to disentangle diagnostic accuracy from the ability to monitor 
disease progression, specifically, the rate of neuronal loss over time. This distinction is essential for the 
evaluation of neuroprotective interventions. The challenges in assessing the efficacy of drugs are 
compounded by the need for careful patient selection and clinical stratification. Beyond the issue of 
overdiagnosis in prodromal or ambiguous cases, polypharmacy remains prevalent even among correctly 
diagnosed patients. This introduces additional variability that can obscure the therapeutic signal of a novel 
compound.

The growing integration of AI and digital systems into clinical research and care also introduces 
significant challenges and ethical considerations. A key concern lies in the “black box” nature of many ML 
algorithms; despite their high predictive accuracy, often lack transparency and interpretability. This opacity 
hampers clinical trust, complicates regulatory approval, and limits actionable insight. Furthermore, AI 
models trained on non-representative or biased datasets risk perpetuating existing health disparities and 
may exhibit poor generalizability across diverse populations. Issues of data privacy and patient autonomy 
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may be amplified in the context of continuous, passive monitoring through wearables and mobile devices, 
necessitating robust frameworks for consent, data governance, and ethical oversight [611].

All the concerns are mirrored in the emerging discourse on neurorights that highlights the lack of 
consensus around what constitutes cognitive liberty, mental privacy, and neurodata ownership. As quoted 
by the European Parliament, “neurorights could be defined as ethical, legal, social or natural principles of 
freedom or entitlement related to a person’s cerebral and mental domain” [612]. Ienca and Andorno [613] 
argue that the ethical foundations of brain-related protections remain underdeveloped, leaving a normative 
vacuum as neurotechnologies outpace legal frameworks. As emphasized by Hanslmayr [614], the rapid 
advances in brain-computer interfaces, non-invasive brain stimulation, and neuroimaging demand parallel 
innovation in governance, transparency, and public engagement.

Microbiome, immunity, and brain function

Beyond computational tools, another frontier in neuroprotection research emerges from biology itself: the 
intricate interplay between the gut microbiome, immunity, and brain function. The gut-brain axis has 
emerged as a compelling frontier in neuroprotection, characterized by complex bidirectional 
communication between the CNS, the enteric nervous system, and the intestinal microbiota. Far from being 
confined to gastrointestinal physiology, the gut microbiome plays an active and dynamic role in modulating 
brain health through immune signaling, metabolic regulation, neurotransmitter synthesis, and 
neuroendocrine communication. Increasing evidence suggests that this axis exerts a profound influence on 
key neurobiological processes, including neuroinflammation, BBB permeability, neurotransmission, and 
synaptic plasticity, all of which are directly relevant to neurodegeneration and neuroprotection [615, 616].

Dysbiosis, or imbalance in the composition and function of the gut microbiota, has been increasingly 
linked to several neurodegenerative conditions. In PD, for example, patients exhibit reduced microbial 
diversity and an overrepresentation of pro-inflammatory taxa, patterns that correlate with systemic 
inflammation and greater motor symptom severity [617]. Similar microbial signatures have been observed 
in AD and MS, suggesting a shared microbiome-inflammation axis that contributes to disease 
pathophysiology [618, 619]. Additionally, there is evidence for a correlation between dysbiosis and ALS 
(see [620] for review); if the relationship is confirmed as causal, it could be exploited in future therapies 
[621].

Microbiota-targeted interventions are a novel class of neuroprotective strategies. Therapeutic 
approaches include the administration of probiotics and prebiotics, dietary modulation, and even fecal 
microbiota transplantation, aiming to restore microbial homeostasis and dampen neuroinflammatory 
cascades [622, 623]. Preclinical studies have shown promising results: Specific strains such as 
Bifidobacterium breve and Lactobacillus plantarum reduce microglial activation, increase anti-inflammatory 
cytokines like IL-10, promote neurogenesis, and enhance cognitive performance in rodent models of AD 
[624, 625].

Beyond bacterial composition, the metabolomic output of the microbiota is also central to its 
neuroactive potential [626]. Short-chain fatty acids are microbial fermentation products exert 
neuroprotective effects via epigenetic regulation, including inhibition of histone deacetylases and 
promotion of neurotrophic signaling [627, 628]. Short-chain fatty acids can also influence BBB integrity and 
immune cell polarization, adding further mechanistic depth to microbiota-mediated brain modulation.

Although clinical translation remains in its early stages, the gut-brain axis represents a promising, non-
invasive, and systems-level target for neuroprotection. Its integration alongside neuroimaging, biomarkers, 
and digital health tools may allow for novel combinatorial approaches capable of modifying disease 
trajectories. Moving forward, robust longitudinal clinical studies, mechanistic elucidation, and personalized 
microbiome profiling will be critical to transforming this emerging science into actionable therapies for 
neurodegenerative disease.
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Global perspectives on diversity in neuroprotection studies

Just as the microbiome underscores biological complexity, the global landscape of neuroprotection trials 
reminds us that diversity in participants is equally essential.

Despite decades of awareness, neuroprotection trials remain disproportionately populated by white, 
male, and high-income participants, limiting the generalizability and ethical validity of their findings. 
Women, racial and ethnic minorities, and individuals from low- and middle-income countries continue to be 
underrepresented, even though these populations often exhibit distinct biomarker trajectories, disease 
risks, and treatment responses. Individuals of African or Hispanic descent may have different patterns of 
AD biomarkers [629, 630], yet are frequently excluded from most large-scale trials. This exclusion stems 
from a combination of structural barriers, including cultural mistrust, logistical limitations, and lack of 
community engagement. Effective solutions include culturally sensitive recruitment strategies, 
decentralized or hybrid trial models, and partnerships with local health leaders. Regulatory agencies have 
increasingly mandated the inclusion of diverse populations in funded research, reinforcing the urgency of 
addressing intersectionality and social determinants of health in clinical trial design [631, 632].

The expansion of neurodegenerative disease-associated clinical trial infrastructure in low/middle-
income countries is equally essential, as the burden of age-related diseases is rising sharply. Investments in 
research capacity-building, shared protocols, regional biobanking, and data analysis platforms are 
necessary to ensure that scientific innovation in neuroprotection has truly global reach and impact [633]. 
To match this call for inclusivity, trial design must also evolve, adopting adaptive and master protocols that 
reflect the complexity of neurodegeneration in the real world.

Adaptive and master protocol strategies for neuroprotection research: toward smarter trials

The increasing complexity of neurological and neurodegenerative disorders, coupled with the paradigm 
shift toward precision medicine, has exposed the limitations of traditional clinical trial designs. 
Conventional randomized controlled trials, long regarded as the gold standard, often fail to accommodate 
the biological heterogeneity, comorbidities, and evolving pathophysiological trajectories that characterize 
chronic brain diseases. To respond to these challenges, new frameworks are emerging that emphasize 
adaptability, inclusivity, and biomarker-driven personalization, aiming to increase both the efficiency and 
equity of neuroprotective research [634].

To address clinical and biological heterogeneity more directly, adaptive trial designs have gained 
prominence. These designs allow for pre-specified modifications, such as dose adjustments, reallocation of 
participants, or sample size recalibration, based on interim data, without compromising statistical rigor. 
Adaptive trials offer greater flexibility, reduce patient exposure to ineffective treatments, and align more 
closely with real-world clinical variability [635].

Building on this adaptability, Hammouri and colleagues [636] introduced the Neyman Weighted 
Multiple Testing Procedure, which incorporates stage-specific weighting, dynamic sample redistribution, 
and sequential testing to enhance decision-making while rigorously controlling type I error rate. This 
approach is particularly beneficial in trials involving multiple treatment arms or stratified subgroups, 
where conventional fixed designs often prove too rigid or inefficient. By prioritizing critical timepoints and 
enabling more flexible allocation of resources, the procedure not only improves statistical efficiency but 
also reinforces ethical accountability in trial conduct.

Even more transformative are master protocol designs, including umbrella, basket, and platform trials. 
These frameworks allow simultaneous testing of multiple therapies or targets within a shared 
infrastructure, reducing redundancy and accelerating discovery. Integrating computational modeling, 
multi-omics data, and biomarker-driven stratification within these trials are key to operationalizing 
precision medicine. Rather than treating trial design as static, these models allow the protocol itself to 
evolve alongside accumulating biological knowledge [637, 638].
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Reconceptualizing neuroprotection in clinical contexts

Methodological innovations converge on a broader necessity: reconceptualizing neuroprotection itself in 
clinical contexts. Despite decades of investigation and an expanding array of molecular targets and 
candidate therapeutics, the field continues to struggle with the lack of a standardized and universally 
accepted definition of neuroprotection. Mechanisms inferred from animal models demand renewed 
scrutiny to establish genuine translational potential [639].

The existing conceptual uncertainty complicates trial design, data interpretation, and ultimately, 
clinical translation. It fosters heterogeneity in outcome measures, mechanisms of action, and temporal 
scales, blurring distinctions between true neuroprotection, symptomatic relief, and disease modification. 
Consequently, promising interventions often fail to demonstrate meaningful clinical impact, revealing the 
limitations of current models and endpoint [566].

Meaningful progress will require a paradigmatic shift towards integrated approaches. These include 
moving beyond single biomarkers to adopt multidimensional assessments that combine biomarkers, 
neuroimaging, digital phenotyping, and behavioral measures [580, 582, 610, 638]. AI and ML are 
accelerating this integration, enabling real-time modeling of disease trajectories and individualized 
therapeutic responses [637]. Simultaneously, advances in our understanding of the gut-brain axis and 
neuroimmune pathways have expanded the therapeutic landscape to include microbiota-targeted 
strategies and modulation of systemic inflammation.

The transformation of clinical trial infrastructure is equally critical. Adaptive designs, umbrella and 
platform trials, and master protocols offer a path forward, but they are not without obstacles. Their 
implementation requires robust computational infrastructure, interdisciplinary coordination, dynamic 
regulatory oversight, and enhanced training for investigators in informatics and biostatistics. Furthermore, 
patient communication and consent processes must evolve to accommodate the flexible and iterative 
nature of these trials [582, 610].

Despite these challenges, the potential benefits are substantial: increased precision, faster optimization 
of interventions, improved participant safety, and more nuanced insights into the biological variability of 
neurodegenerative conditions. Inclusive recruitment strategies and global research equity are also 
imperative to ensure that trials reflect the diversity of patient experiences and are generalizable across 
populations. Figure 6 schemes the drawbacks and advances in the progress of “measuring” 
neuroprotection.

Ultimately, the future of neuroprotection research hinges on embracing complexity rather than 
avoiding it. Progress depends on fostering collaboration across scientific domains, refining conceptual 
frameworks, and aligning innovation with ethical responsibility and clinical relevance. Only through this 
holistic and forward-thinking approach can we hope to develop therapies that go beyond modifying disease 
progression, preserving, and potentially restoring neural integrity in the human brain.

Together, these insights lay the groundwork for a final roadmap: a multitarget, biomarker-guided 
vision of neuroprotection for the decades ahead.

Conclusions: a roadmap for multitarget, biomarker-guided 
neuroprotection
Neurodegenerative diseases such as AD, PD, HD, and ALS share the tragic feature of progressive neuronal 
loss, but they also reveal a deeper truth: Neurons do not degenerate in isolation. Rather, they fail within a 
complex, multicellular environment in which astrocytes, microglia, oligodendrocytes, vascular elements, 
and systemic immune components actively participate. This review has highlighted how 
neuroinflammation, oxidative stress, mitochondrial dysfunction, and impaired proteostasis converge to 
create a vicious cycle that overwhelms neuronal resilience. At the same time, the evidence gathered 
underscores that each of these mechanisms represents not only a challenge but also an opportunity for 
therapeutic intervention.
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From this perspective, neuroprotection must be reframed as a systemic, integrated endeavor. Future 
therapies will need to combine neuron-directed approaches with strategies that modulate glial function, 
restore homeostatic communication across cell types, and exploit emerging biomarkers for early detection 
and patient stratification. The days of single-target interventions, such as focusing exclusively on Aβ in AD 
or dopaminergic neurons in PD, are coming to an end. The next era will be defined by multimodal 
interventions capable of addressing the layered complexity of neurodegeneration.

Another major theme is the role of biomarkers. Reliable diagnostic, prognostic, and pharmacodynamic 
markers remain indispensable for translating laboratory advances into clinical benefit. Blood-based and 
imaging biomarkers not only allow the identification of individuals at risk during prodromal stages but also 
provide measurable endpoints for clinical trials. Without this integration of biomarkers, it will remain 
difficult to distinguish symptomatic effects from true disease modification. Conversely, with them, the field 
can design adaptive trials, refine patient selection, and accelerate therapeutic discovery.

Importantly, the concept of neuroprotection must evolve from a defensive stance to a proactive, 
regenerative paradigm. Enhancing synaptic plasticity, stimulating intrinsic cytoprotective pathways, and 
delivering neurotrophic support are necessary, but insufficient steps. Long-term success will require 
regenerating functional circuits, possibly through glial reprogramming, neuromodulation, or advanced gene 
therapy. Though many of these strategies remain experimental, their convergence with real-world data, 
digital phenotyping, and precision medicine frameworks heralds a transformative decade ahead.

Equally vital is the adoption of predictive, preventive, personalized, and participatory (P4) medicine. 
This framework aligns with the multifactorial nature of neurodegeneration and ensures that interventions 
are matched not only to disease stage but also to individual patient biology and lifestyle. The integration of 
genomics, proteomics, metabolomics, imaging, and clinical metadata will be essential to construct patient-
specific trajectories and therapeutic windows.

Finally, the social and economic burden of neurodegenerative disorders demands urgent innovation. 
As the global population ages, the prevalence and impact of these diseases will continue to grow, straining 
healthcare systems and eroding quality of life for millions of patients and families. Research must therefore 
maintain a dual focus: mechanistic rigor in the laboratory and translational efficiency in the clinic. 
Collaboration among neuroscientists, clinicians, data scientists, patients, and policymakers will be 
necessary to transform incremental advances into real-world impact.

In conclusion, the path forward lies in embracing complexity rather than simplifying it. By 
acknowledging the active role of glial cells, securing robust biomarkers, and designing multimodal, 
personalized strategies, the field can move closer to genuine disease modification. Neuroprotection beyond 
neurons is no longer an aspiration; it is a necessity. Only through an integrated, systemic, and forward-
looking approach can we hope to not merely extend life but preserve its quality in the face of 
neurodegeneration.
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