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Abstract

Machine learning (ML) and deep learning (DL) models applied to electronic health records (EHRs) have
substantial potential to improve oncology care across diagnosis, prognosis, treatment selection, and trial
recruitment. However, opacity of many high-performing models limits clinician trust, regulatory
acceptance, and safe deployment. Explainable artificial intelligence (XAI) methods aim to make model
behavior understandable and actionable in clinical contexts. The present perspective summarizes current
XAl approaches applied to EHR-based oncology tasks, identifies key challenges in evaluation,
reproducibility, clinical utility, and equity, and proposes pragmatic recommendations and research
directions to accelerate safe adoption in oncology. Common XAI categories used with EHR data include
feature importance/interaction methods, intrinsically interpretable models, attention mechanisms,
dimensionality reduction, and knowledge distillation or rule extraction. Tree-based models with SHapley
Additive exPlanations (SHAP) explanations dominate recent EHR studies. Other interpretable strategies,
such as generalized additive models and rule sets, appear in settings where transparency is prioritized.
Gaps include inconsistent reporting, scarce formal evaluation of explanations for clinical utility, limited
reproducibility for data and code availability, inadequate external validation, and insufficient consideration
of fairness and equity that these issues are particularly important in oncology, where heterogeneity and
stakes are high. Overall, integrating XAI with EHR-driven oncology models is promising but
underdeveloped, which requires further progress by multi-stakeholder evaluation frameworks,
reproducible pipelines, prospective and multicenter validations, and equity-aware design. The field should
prioritize clinically meaningful explanations beyond ranking features and study how explanations affect
clinician decision-making and patient outcomes.
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Introduction

Electronic health records (EHRs) provide rich, longitudinal, multimodal clinical data that can power
machine learning (ML)/deep learning (DL) models, tasks including early detection, risk stratification,
prognosis prediction, and treatment selection for oncology patients [1, 2], and optimizing clinical trial
registration and enrollment for medical professionals [3]. High-performing “black box” models, such as
ensembles and neural networks, frequently outperform traditional approaches on complex prediction
tasks, yet their opacity impedes clinician trust, regulatory approval, and safe deployment in high-stakes
oncology care [4-6]. Explainable artificial intelligence (XAI) techniques seek to open the black box by
producing human-interpretable descriptions of model behavior and rationale [7-9]. Recent systematic and
scoping reviews of XAl applied to EHR data emphasize a surge in XAI use but highlight notable
heterogeneity and a lack of rigorous evaluation and reproducibility [10-12]. This perspective aims to
synthesize those insights and apply them specifically to oncology, as well as outlining current practices,
limitations, and actionable recommendations.

XAI categorization relevant to EHR-based oncology

Building on prior taxonomies, XAl approaches used with EHR data can be organized as follows. Each has
different implications for clinical adoption in oncology. The publication trend related to XAl approaches in
the field of oncology using EHR data in recent years is shown in Figure 1.
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Figure 1. Publication summary of XAl approaches used with EHR data in oncology. (a) Publication trend of XAl studies in
the field of oncology using EHR data between January 1st, 2018, and Nov 1st, 2025. (b) Oncology categorization of XAl studies
using EHR data in recent publications. Panel (a) shows the number of publications per year meeting the inclusion; panel (b)
categorizes included studies by oncology subdomain and XAl method. We searched PubMed, Web of Science, and arXiv for
articles published Jan 1, 2018, to Nov 1, 2025, using terms (“explainable Al” OR “XAl”) AND (“electronic health records” OR
“‘EHR”) AND (“oncology” OR “cancer”). Included studies applied XAl methods to EHR-derived oncology tasks. Exclusions: non-
EHR imaging-only studies, purely technical XAl methods without EHR use.

Feature importance and interaction methods

The post-hoc, model-agnostic, or model-specific methods have been found to quantify the contribution of
input features to model predictions, for instance, SHapley Additive exPlanations (SHAP), permutation
importance, and partial dependence plots (PDPs) [13, 14]. Recent studies have highlighted SHAP’s
widespread use in survival or stage prediction using ensemble/tree-based models on cancer cohorts, such
as The Cancer Genome Atlas (TCGA) [15] that the application of SHAP could produce global feature
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rankings in which genes, mutations, or clinical covariates are most predictive of survival and local SHAP
values to explain an individual patient’s risk. These kinds of XAls have the potential to identify prognostic
features like lab values, genomic markers, and comorbidities, explain individual risk predictions, and
surface potential feature interactions, such as drug-comorbidity interactions.

Intrinsically interpretable models

The models designed for transparency consist of generalized additive models (GAMs), decision trees, rule
lists, and sparse linear models, which provide inherently understandable decision logic but may trade off
predictive performance. The approaches like decision trees, logistic regression variants, and cluster-based
methods have been used for cancer diagnosis and risk prediction with interpretable survival scores from
nomograms construction [16, 17]. The boosted/ensemble decision tree adaptations and microarray
datasets have also been applied to produce interpretable models for cancer staging or subtype classification
[18, 19]. It notes that the model development could be improved from an interpretable design, such as
shallow decision trees, logistic regression with limited features, and Bayesian rule lists, rather than
explaining a black box post-hoc. The optimized interpretability of XAl on EHRs would be used in treatment-
decision aids with a clear rationale to generate triage tools guiding therapy escalation, as well as regulatory
scenarios with required traceability.

Attention mechanisms and representation-focused explanations

The sequence/time-series models have usually been used for longitudinal EHR data to highlight temporally
important events and attention weights are sometimes interpreted as importance scores, although their
reliability as explanations is debated. For clinical sequences, Reverse Time Attention model (RETAIN)-style
reverse attention designed for interpretability and self-attention variants have been adapted for clinical
sequences, that RETAIN/RetainVis-inspired models were applied to EHRs [20], which might have
transferable potential to oncology longitudinal HER. Attention highlights prior imaging diagnoses,
progressive lab trends, or particular chemotherapy cycles driving a prediction of near-term deterioration
or recurrence [15, 21, 22], which implies potential application on oncology treatment timelines to
sequential HER by addressing critical time windows or events of rapid biomarker decline, driving a
prognosis prediction.

Dimensionality reduction and visualization

The methods, including t-SNE, UMAP, and concept bottlenecks, project high-dimensional features into
lower-dimensional interpretable representations, which are useful for cancer cohort stratification and
exploratory analyses, especially sparse DL, Least Absolute Shrinkage and Selection Operator (LASSO),
clustering to identify exemplar patients, selecting gene pathways or features most informative for cancer
subtype or survival [23-25]. The applied sparse DL and pathway-level selection have been applied in
glioblastoma survival prediction using TCGA-like data, while dimensionality reduction has also found for
gene and pathway discovery in cancer datasets [26]. The clustering or affiliation analysis on EHRs shows
abilities in stratifying patients with stage 1 lung cancer for further definition of clinically meaningful
subgroups [27].

Knowledge distillation and rule extraction

There have been techniques for distilling complex model behavior into simpler surrogate models or rule
sets to approximate decision boundaries, including surrogate decision trees, decision-sets, rule extraction,
and mimic learning. The mimic learning and distillation for clinical re-admission and mortality tasks have
been discussed with applicable approaches to oncology models by distilling a neural survival model into a
set of rules that estimate recurrence risk based on a small set of features [28]. The decision-sets design
using metrics like rule count and rule length can be used to produce compact rule lists in order to classify
tumor subtype or indicate eligibility for a clinical pathway [29].
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SHAP: benefits, known limitations, and recommended mitigations for
oncology EHRs

SHAP has been widely used for feature-level explanations because of its theoretically grounded attribution
and local explanations. However, several practical issues are critical in oncology applications:

¢ Instability and sampling variability: For complex, high-dimensional EHRs or rare endpoints
(common in oncology), SHAP values can vary substantially with bootstrap resampling or small data
shifts. Recommendation: report confidence intervals/variance for local SHAP attributions obtained
via bootstrapping and quantify explanation reproducibility across folds.

e Feature correlation and attribution ambiguity: Correlated clinical or genomic features can produce
misleading attributions since Shapley values distribute shared contribution among correlated
features arbitrarily [30]. Recommendation: pre-process by grouping highly correlated features (e.g.,
pathway-level aggregation for genomics, summary lab trends), use conditional SHAP approximations
when feasible, and complement with interaction analyses (SHAP interaction values) and causal or
counterfactual checks.

¢ Computational burden: Exact SHAP for complex models and large feature sets is expensive.
Recommendation: use approximations (TreeSHAP for tree ensembles), feature grouping, or
mimic/surrogate models for explanations at scale; report compute resources and latency relevant for
EHR integration.

 Interpretability in temporality/multimodality: Standard SHAP applied to tabular snapshots may miss
sequential or imaging features’ contributions. Recommendation: apply SHAP to modality-specific
components (e.g., per-visit features, embedding dimensions for images) and combine with temporal
attention visualizations and counterfactual narratives.

Applications and further considerations of XAl integrating EHR

For the diagnosis of oncology patients, the EHR-based predictors for early cancer detection benefit from
explanations in flagging at-risk patients from routine labs and symptoms by justifying screening or referral
recommendations and avoiding alarm fatigue [31, 32]. Explaining survival or recurrence risk allows
oncologists to contextualize model outputs with patient-specific drivers on tumor markers and
performance status, which enables shared decision-making for prognosis and survival prediction [33]. For
patients who need precise treatment, XAl reveals clues about which clinical, genomic, or comorbidity
features could drive predictions favoring a given therapy, potentially supporting treatment personalization
by offering interpretability when model recommendations diverge from standard of care [34]. To optimize
clinical trial matching and operational workflows, transparent models can justify eligibility flags and
improve trial recruitment by allowing trial teams to understand why patients are prioritized [35, 36].
Otherwise, explanations could strengthen treatment selection by helping clinicians assess whether a
predicted adverse event is plausible and what modifiable factors contributed to safety monitoring [37].

It has been found a lack of rigorous evaluation of XAI methods for clinical relevance that typical
assessments often stop at qualitative plausibility or visualization [38]. For further oncology deployment, it
requires comprehensive evaluations by addressing fidelity about how well explanations reflect true model
computations, clinical usefulness of whether explanations change clinician decisions appropriately,
robustness in stability of explanations across input perturbations and cohorts, and human-centered
evaluation concerning usability studies with oncologists and multidisciplinary teams. Otherwise,
reproducibility remains limited that many studies have used proprietary EHRs without sharing code,
independent verification, or external validation [33, 39, 40]. The XAl models in area of oncology must
prioritize data-sharing strategies, code release, and detailed reporting of preprocessing and model
pipelines. Moreover, clinician trust depends not only on explanation correctness but also on relevance,
presentation, and fit within clinical workflows. Therefore, explainability should be tailored that simple
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feature lists might suffice for some tasks with binary classes while causal or counterfactual explanations
might be more persuasive for treatment decisions. To identify legal and regulatory factors, regulatory
frameworks increase the imperative for meaningful explanations. For oncology patients with life-altering
interventions, regulators and institutions will expect rigorous validation and traceability.

Challenges and future directions of XAl in oncology

There have been several challenges influencing future application of XAl on EHRs in oncology, including
heterogeneity, multimodal data, class imbalance, and equity and representation. Heterogeneity is attributed
to tumor biology diversity, treatment modalities, and patient comorbidities, which increase model
complexity, as well as the challenge of producing generalizable explanations. For multimodal data, oncology
relies on imaging, pathology, genomics, and EHR-derived clinical features that integrating and explaining
multimodal models remains technically and conceptually difficult. Otherwise, there exists class imbalance.
Many oncology endpoints are rare, which make model explanations sensitive to sampling variability.
Concerning healthcare equity, under-representation of low-resource settings and minority populations
risks biased models and explanations without generalization, which would be raised as a major equity gap
in Al-in-healthcare reviews and domain-specific syntheses.

There still be several oncology-specific challenges and implications:

¢ Heterogeneity: inter-tumor and intra-patient heterogeneity mean features predictive in one cohort
may not generalize. Action: require external validation and subgroup explanation audits; present
explanation differences by tumor subtype/stage.

e Sparsity and rare events: many oncology endpoints (e.g., rare toxicities) lead to class imbalance,
making explanation reliability low. Action: bootstrap estimation of explanation variance; use data
augmentation or synthetic controls to stabilize estimates.

e Multimodality: EHRs combined with imaging, pathology, and genomics complicate explanation
attributions. Action: use modality-specific explainers, hierarchical explanations (first indicate which
modality, then which features), and design visualization for tumor boards.

¢ Temporal complexity: treatments and biomarker trajectories matter. Action: adopt sequence-aware
explainers (RETAIN-like models with clear attention maps, counterfactual time-window analyses)
and present temporal narratives.

e Equity/regulatory stakes: life-altering decisions require rigorous fairness auditing and traceability.
Action: add fairness metrics and transparent documentation of datasets and preprocessing.

The further application of XAl on EHRs in oncology needs to prioritizing clinically meaningful
explanation types by moving beyond feature importance ranks to context-rich explanations, for example,
counterfactuals about what would change the prediction, causal insights where feasible, and patient-level
narratives connecting model drivers to actionable clinical considerations. The standardized evaluation
framework is also warranted by adopting batteries to assess fidelity, robustness, clinical utility, and user
acceptance and incorporating prospective human-in-the-loop studies to measure decision changes and
patient-level outcomes. The enhancement of reproducibility and reporting is also required by sharing code,
model checkpoints, synthetic or de-identified datasets when possible as well as adhering to reporting
checklists including data preprocessing, feature construction, model selection, and XAl settings. Otherwise,
the requirement of external validation across diverse oncology centers with prospective pilot deployments
need to be implemented to assess transportability and real-world impact. With equity-centered design and
fairness auditing, systematical evaluation of subgroup performance and explanation differences consists of
fairness metrics and qualitative assessments with clinicians caring for under-represented populations.
Furthermore, it's necessary to develop interactive explanation interfaces integrated into oncology
workflows, such as EHR dashboards and tumor boards co-designed with clinicians to present explanations
at the appropriate level of detail.
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Multi-dimensional evaluation and integration framework for XAl in
oncology EHRs

A practical framework has been proposed to evaluate and integrate XAl into oncology workflows. The
framework explicitly evaluates explanations across five dimensions and prescribes integration steps:

 Fidelity: quantitative checks that explanations reflect model computation (e.g., agreement between
surrogate and original model, perturbation tests).

* Robustness and stability: sensitivity analyses across input perturbations, bootstrapping to measure
explanation variance, and tests across cohorts [41].

¢ Clinical utility: prospective human-in-the-loop studies assessing whether explanations change
clinician decisions in intended directions; pre/post comparison of decision concordance and
downstream patient-relevant outcomes.

e Fairness and transportability: subgroup performance and explanation disparity audits across
demographic, socioeconomic, and clinical strata; external validation across centers.

¢ Usability and workflow fit: qualitative usability testing with oncologists, nurses, and tumor board
members, integrated User experience (UX) for EHR dashboards, and contextualized explanation level
(summary vs. detail).

Integration steps
¢ Pre-deployment: internal fidelity and stability tests + fairness audits on retrospective data.

¢ Pilot deployment: prospective small-scale human-in-the-loop pilot within tumor boards; measure
decision changes and feasibility.

e Multicenter validation: external validation at heterogeneous centers, with standardized reporting
and code release.

¢ Deployment & monitoring: continuous post-deployment monitoring of model and explanation drift
and periodic re-audits.

Use-case: explainable multimodal model for recurrence risk in stage II-1II colorectal cancer

e Dataset: de-identified EHR (demographics, labs, medications, comorbidities), pathology reports
(NLP-extracted features), targeted genomic panel (mutations), and structured treatment records
(retrospective).

e Task: 2-year recurrence risk prediction after definitive surgery (binary), with class imbalance.

¢ Model architecture: multimodal fusion model using gradient boosted trees (LightGBM) on tabular
EHR plus logistic regression on aggregated genomic pathway scores; output fused via stacking
ensemble to predict recurrence probability. Temporal features encoded as summary trends (slope,
variance) over pre-surgery period.

e XAl pipeline: TreeSHAP for global and local attribution on ensemble predictions; bootstrap SHAP
variance estimates; grouped features for genomic pathways and lab trends; counterfactual
generation (sparse counterfactuals) for actionable narratives (“If neutrophil-to-lymphocyte ratio had
been X lower, predicted risk would fall by Y%").

¢ Evaluation: (1) Fidelity: compare surrogate decision tree accuracy with original model (AAUC), (2)
Robustness: bootstrapped SHAP confidence intervals and perturbation tests, (3) Clinical utility:
within a tumor board pilot, randomized case vignettes with vs. without explanations to measure
change in treatment recommendations and confidence, (4) Fairness: subgroup AUC & explanation
disparity by race/insurance status, (5) Reproducibility: share code and synthetic dataset; provide
preprocessing scripts.
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Conclusions

In conclusion, explainable Al methods hold promise to unlock EHR-driven advances in oncology by
improving interpretability, trust, and the safe translation of predictive models into clinical practice. The
current practices have been characterized by rapid uptake of post-hoc explanation tools notably SHAP but
insufficient evaluation, reproducibility, and equity assessment. For application of XAl on EHRs in oncology,
future work must emphasize rigorous evaluation of explanations, multicenter validation, transparency, and
human-centered design to ensure the clinically meaningful, equitable, and trustworthy support delivered
by XAL
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